CodePM: Parity-based Crash Consistency for
Log-Free Persistent Transactional Memory

Guanglei Xu, Yuchong Hu, Member, IEEE, Dan Feng, Fellow, IEEE, Wenpeng He, Junyuan Huang

Abstract—Emerging persistent memory (PM) can provide large
persistent capacity with performance comparable to DRAM
in modern memory systems. Persistent transactional memory
(PTM) needs to ensure data consistency after unexpected power
loss or crashes. Therefore, crash consistency strategies such as
persistent logging are still required. However, the additional
overhead introduced by these strategies, such as significant extra
writes on PM, can lead to system performance degradation.
In this paper, we propose CodePM, a fault-tolerant PM trans-
actional library that utilizes parity-based crash consistency to
remove logging overhead while guaranteeing the correct state
of data. CodePM reuses the decoding capability of parity to
detect and recover inconsistent objects. To ensure consistency
without logs when updating, CodePM employs fine-grained
memory fences to carefully align potential inconsistency with
the repairability of parity. To detect inconsistency without logs
when recovering, CodePM utilizes optimistic speculative scanning
recovery by reusing checksum and parity, which supports instant
recovery with transient degraded reliability. Moreover, we study
the memory fence blocking effects and further augment CodePM
with pipelined encoding and persistent writing to hide update
latency. We implemented CodePM on Pangolin, the state-of-
the-art parity-based PTM for fault-tolerance. Evaluation results
with real-world workloads on Intel Optane DCPMM show that
CodePM can achieve up to 3.4x higher throughput than Pangolin.

Index Terms—Crash consistency, persistent memory (PM),
erasure coding.

I. INTRODUCTION

ERSISTENT memory (PM) is a promising new mem-
ory technology to provide memory-like performance and
disk-like capacity for persistent storage systems [1]. System
applications can directly perform load/store instructions
to byte-addressable PM. While data on PM can be stored
persistently, the data correctness is affected by crash inconsis-
tency. Unexpected crashes may cause data inconsistency due
to the volatile cache hierarchy and out-of-order execution.
To ensure crash consistency of PM, existing persistent
transactional memory (PTM) [2] commonly uses write-ahead-
logging (WAL) during updates on PM. WAL persists logs

This work is supported in part by the National Natural Science Foundation
of China (No. 62272185 and No. 61821003); in part by the Shenzhen Science
and Technology Program (JCYJ20220530161006015); and in part by the Key
Research and Development Program of Hubei Province (No. 2021BAA189).
(Corresponding author: Dan Feng.)

Guanglei Xu, Dan Feng, Wenpeng He and Junyuan Huang are with the
Wuhan National Laboratory for Optoelectronics, Huazhong University of
Science and Technology, Wuhan 430074, China (e-mail: grayxu@hust.edu.cn;
dfeng@hust.edu.cn; wenpenghe @hust.edu.cn; jyhuang @hust.edu.cn).

Yuchong Hu is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China, and
also with and Shenzhen Research Institute of Huazhong University of Science
and Technology, Shenzhen 518057, China (e-mail: yuchonghu@hust.edu.cn).

on PM before in-place updates, ensuring that the system can
recover to a consistent state after crashes. But logs significantly
increase write operations on PM, which usually suffers from
limited write performance [1], leading to system performance
degradation. Prior studies [2]-[4] have proposed strategies like
decoupled logging to reduce logging overhead. However, these
methods still require extra persistent writes for crash consis-
tency or are limited to specific data structures or systems.

Some previous studies [5], [6] utilize system-level reliability
redundancy (e.g., parity) to contribute to crash consistency,
but they either focus on reducing development efforts or
still require additional PM writes during updating. While
redundancy can repair data corruption caused by software or
hardware errors, it cannot ensure PM crash consistency, so
logs are still required [7]. This is because parity redundancy
and logs, as two distinct components, are designed to address
different aspects of data correctness issues. The disk-based
system TRAID [8] observed the functionality redundancy
between the underlying RAID system and the upper-layer
database logs. It then reduced some of the upper-layer logs
by reusing the underlying parity blocks. This design inspired
us to observe the overlap between crash consistency logs and
fault-tolerant parity redundancy on PM. Our key finding is that
parity can play a dual function, facilitating both corruption
repair and crash recovery. By decoding parity alongside other
consistent data, it is possible to restore inconsistent data to
its prior consistent state, an effect analogous to that of undo-
logging. Consequently, this approach potentially obviates the
need for logging traditionally required for guaranteeing PM
data crash consistency, thus significantly improving overall
system performance.

However, it is still challenging to provide both crash con-
sistency and fault-tolerance only by parity redundancy: 1)
Multiple inconsistency. In the transaction update workflow,
in-place updates are executed not only for the targeted data
column but also for all related parity columns. Consequently,
an unexpected system crash might lead to inconsistencies
across data and parity columns, rendering the issue beyond the
repairability of parity redundancy. 2) Inconsistency detection
without logs. In addition to logging the content of updated
regions, logs also record the locations of these regions to
fully detect and recover inconsistency. Previous studies that
utilized system redundancy to eliminate logging overhead still
require additional persistent writes to record the potential in-
consistency locations, such as Kamino-TX [6] using additional
intent logs, and Romulus [9] employing additional persistent
flags. Therefore, it remains a challenge to detect and repair
inconsistencies without introducing extra overhead in updates.

In this paper, we propose CodePM, a fault-tolerant PM
transaction framework, which reuses parity redundancy for
crash consistency to remove logs. To address the first challenge
(i.e multiple inconsistency), we propose fine-grained memory
fence instructions to apply stricter write orders, thereby pre-
venting concurrent updates to multiple PM areas in a single
transaction. It guarantees that the repairability of parity aligns
with the range of potential inconsistency by separating data
updates and parity updates. To address the second challenge
(i.e. inconsistency detection without logs) without extra update
overhead, we propose speculative recovery as an optimistic
strategy to effectively scan the entire PM space and recover to
consistent states. This approach reuses checksums verification
and parity redundancy decoding to enable the comprehensive
detection and recovery from potential inconsistency. Specula-
tive recovery can also support instant recovery as a background
scanning process. This approach allows applications to imme-
diately provide foreground services after crashes, albeit with
temporarily reduced reliability guarantees. We also improve
scanning throughput through inter-stripe parallelization and
software prefetching.
While parity-based consistency of CodePM can effectively
reduce PM write traffic by removing logs, it introduces stricter
fence ordering in updates, potentially diminishing instruction
parallelism and negatively impacting system performance [10].
We first study the blocking effects of memory fences in
asynchronous memory I/O protocols and then discover that,
even under the same consistency guarantees, different instruc-
tion organization strategies can result in varied performance.
Driven by findings through experiments, we propose pipeline
encoding and persistent writing, which implement early flush-
ing and encoding to alleviate the blocking effects of memory
fences and hide update latency. This strategy enables the CPU
to execute foreground computations while background in-flight
write requests are concurrently committed to PM, enhancing
instruction parallelism.
To illustrate the efficiency of CodePM, we built it atop
the current state-of-the-art fault-tolerant PTM, Pangolin [7],
and evaluate its performance using a series of PMDK bench-
marks [11]. Additionally, we executed real-world YCSB [12]
workloads on a transactional key-value store implemented by
CodePM. Evaluation results reveal that CodePM markedly
reduces write traffic to PM media and improves both the
latency and throughput of update transactions.
In summary, this paper makes the following contributions:
o We analyze the write traffic issue in existing fault-tolerant
PTM and, for the first time, propose parity-based crash
consistency, thereby removing log overhead. (Section II)

o To ensure crash consistency without logs, we limit con-
current updates to multiple PM areas by fine-grained
fence. Then, we repurpose the system reliability compo-
nents to implement log-free crash recovery. (Section III)

o We further study memory fence blocking effects and
propose pipelined encoding and persistent writing to
hide update latency by exploiting instruction parallelism.
(Section IV)

o« We implement CodePM and evaluate its performance.
The results show that CodePM significantly outperforms

the state-of-the-art fault-tolerant PTM in several bench-
marks. (Section V & VI)

II. BACKGROUND AND MOTIVATIONS
A. Persistent Memory

Persistent memory (PM) can provide performance com-
parable to DRAM with large capacity for persistent storage
systems [1]. Memory-intensive systems can leverage PM
as an alternative to DRAM via asynchronous memory ac-
cess protocols, including DDR-T and Compute Express Link
(CXL) [13]. Furthermore, PM data persistence can diminish
system recovery overhead, such as memory caching system
warm-up time after crashes. Intel Optane DCPMM, as the first
commercially available PM device, has been widely researched
and deployed. Although the Intel Optane series has been shut
down, industrial research on PM remains active and ongoing,
including Samsung memory-sematic SSD [14].

Despite the many advantages that PM brings to memory
system design, it also leads to other design challenges due to
its unique characteristics [1], [15]. Existing PM devices use
multi-layer structures containing SRAM or DRAM as write-
back caches to hide the slower media latency. However, numer-
ous studies have demonstrated the low write performance of
PM devices, which significantly deteriorates under high pres-
sure [1], [15]. Meanwhile, excessive write requests can lead to
heightened competition for resources like memory controllers,
thereby delaying all memory I/O requests [16]. Moreover,
numerous write requests also diminish the naturally limited
write endurance of PM. As a result, many systems [17], [18]
focus on reducing PM writes to improve system performance
and extend the lifetime of PM.

The persistence of data on PM reduces the recovery cost af-
ter unplanned crashes or shutdowns, but poses new challenges
to maintain the correctness of data [1], [2]. To ensure crash
consistency, the x86 architecture offers a series of persistence-
related instructions, such as CLWB and CLFLUSHOPT, which
can flush data in cacheline to PM. Besides, NTSTORE can by-
pass the cacheline and write data directly into PM through the
line fill buffer. Due to CPU volatile cacheline and instruction
hardware reordering mechanism, weak-ordered persistence-
related instructions may be executed out of order. Therefore,
memory fence instructions, like SFENCE, are used to ensure
the correct order of persist instructions. For example, the write
operations that are before memory fences can be globally
visible to those after.

Existing PM systems [2], [11] construct mechanisms such
as write-ahead-logging (WAL) to ensure the crash consistency
during non-atomic writes. For example, undo-logging first
copies the old data before updating it to PM. This log is
then used to detect and recover potential inconsistency after
unplanned system crashes. Copy-on-write (CoW) represents an
alternative strategy that addresses the challenge of non-atomic
in-place writes by executing modifications on a separate copy.
However, the overhead of copying data in CoW presents
challenges to its adoption as a complete replacement for the
WAL strategy. While some studies [2], [3] propose strategies to
reduce log overhead, they are limited to small-range updates,
or still require a certain amount of additional PM writes.

Persistent transactional memory (PTM) offers a transac-
tional interface that simplifies integration with upper-layer
systems originally designed for traditional DRAM, overseeing
all operations on PM to ensure crash consistency [5], [7],
[19]. This interface streamlines the transition from DRAM
to PM systems, reducing development efforts and ensuring
optimal performance through centralized management. Intel
PMDK Libpmemobj [11], an open-source C library, manages
PM address space — mapped via mmap () — into PM pools
and maintains persistent metadata at the head of each pool to
identify internal persistent objects. It utilizes the WAL strategy
for crash consistent updates in upper-layer applications with a
transaction interface consisting of C macros.

B. Fault-Tolerant Persistent Memory

Data errors also affect the data correctness on PM [5],
[7], [20], [21]. Memory errors in modern production systems
have also been extensively studied, as uncorrectable memory
errors may lead to serious errors in systems. Recent studies
have demonstrated that the reliability of PM devices is lower
than that of DRAM [5], [7], [20]. The media of PM may
experience random errors, such as bit flips, some of which
are beyond the capabilities of ECC modules. Furthermore,
errors above the hardware level, such as PM device firmware,
kernel errors, CPU errors and software scrubbing, can result in
incorrect write requests being sent to PM media. These errors
from higher levels cannot be detected by device-level ECC.
Although existing commercial products are equipped with on-
chip ECC modules, the mean time between failures (MTBF)
of PM devices is still only 200 hours [22], which is on par with
hard disks. What’s worse, the default interleaved configuration
mode in PM address space will further amplify the risks of
data error, similar to RAID 0 of disks.

For fault-tolerant memory systems, the cost of using repli-
cation is relatively high compared to encoded parity [23].
Meanwhile, some studies [24] have demonstrated that em-
ploying erasure coding can provide better reliability compared
to replication. Reed-Solomon codes [25], the most commonly
used erasure coding scheme, are composed of multiple stripes
with n columns, including p parity columns and n — p data
columns, enabling the recovery of up to p erroneous data
columns by decoding any n — p columns. Note that XOR
parity represents a specific instance of erasure coding when p
is equal to 1. Erasure coded parity redundancy is widely used
in distributed systems and local systems [8], [23].

Previous fault-tolerant PTMs [5], [7], [20], including Pan-
golin, employ system-level parity redundancy on PM to
provide system-level fault-tolerance. To detect potential data
corruption, Pangolin keeps checksum fields alongside objects
for error detection. It then aggregates multiple objects with
checksums into groups to form a complete coding stripe,
and generates XOR parity to enable the repair of detected
corruption. When the application issues update requests, Pan-
golin allocates a dedicated DRAM buffer as a shadow copy
for each updated datum, redirecting application read/write
requests to this buffer. Additionally, new checksums and parity
are calculated in this DRAM buffer. This design prevents

Object overwrite transaction latency

15 @A Pangolin-base
Tn:I EEN +parity
=10/ EE= +log
é BN +parity+log
& 5

256 B

512 B 1 KB

obj size (B)

2 KB 4 KB

Fig. 1. Logging and parity overhead of object random overwrite transactions
in Pangolin.

applications from directly modifying PM addresses, thereby
preventing crash inconsistency caused by issues such as ran-
dom cache eviction. Finally, during the transaction commit,
since in-place updates on PM is not atomic, all updated
fields in the DRAM buffer are persisted back to PM with
additional replicated redo logs. The rare instance where crash
inconsistency and corruption occur simultaneously at the same
offset is not considered [7]. Therefore, inconsistent parity can
be reconstructed using data and logs. Pangolin is built on top
of Libpmemobj [11], thus applications or benchmarks upon
the Libpmemobj C macro transaction interface can be quickly
migrated to Pangolin.

C. Motivation

Both parity and logging aim to ensure data correctness.
WAL records update operations on PM in advance, facilitating
data recovery through log replay following a crash. Parity
offers fault tolerance by recovering errors at both hardware
and software levels. Previous studies [5], [7], [20] apply
both mechanisms separately to address distinct issues of data
correctness. Consequently, ensuring crash consistency and
fault tolerance during in-place updates requires multiple PM
write operations for both data and parity. This increased write
activity can drastically affect the system’s performance due
to PM’s limited write bandwidth. Furthermore, heavy PM
write loads can lead to excessive contention, degrading the
performance of all memory I/O operations [16].

To study the impact of logs and parity on system perfor-
mance, we conducted a PMDK object overwrite transaction
micro-benchmark by removing logs and parity of Pangolin [7].
Figure 1 shows the latency of overwriting varying object sizes
with different strategies. Pangolin-base represents neither logs
nor parity, while the others are variants with logging or parity
protection. It can be observed that both logs and parity increase
the average latency of overwrite transactions. Since logs in
Pangolin are replicated, adding only logs increases the latency
by over 2.5 times. In the case of overwriting 4 KB objects,
the combination of parity and logs increases the latency by
over 3 times. Extensive writes in Pangolin markedly reduce
system performance, particularly with numerous log-related
operations.

Some studies have addressed extensive log writes in PTM,
proposing system redundancy for crash consistency. Yet, these

Repair data corruption

Coding Stripe

Recover crash inconsistency

Fig. 2. Parity serves for both corruption repair and crash recovery. For
example, one encoded column of parity redundancy can be used to repair
the data corruption in the first data column or recover the crash inconsistency
in the second data column, as long as they do not occur at the same offset.

approaches [6], [9] still necessitate additional writes on PM
during updates to ensure crash consistency. The disk array
system TRAID [8] identifies the redundancy overlap between
the parity of the underlying RAID system and the logs of
upper-layer databases, thereby reducing a part of logs by RAID
parity. Driven by this insight, we have found that if crash
inconsistency is also considered a type of data error, then the
logging functionality within the all-or-nothing guarantees of
PTM can be seen as a variant of transient replication. This
motivates us to rethink how to ensure crash consistency only
through existing parities, thus reducing performance degra-
dation from logs. We observed that decoding computation
of the parity together with other objects in the same stripe
can retrieve an inconsistent object at any position, as shown
in Figure 2. In other words, the repairability of parity can
recover crash-inconsistent data to the latest consistent state,
similar to undo-logging. The protection strategy in this paper,
similar to Pangolin’s, does not address data errors and crash
inconsistencies that occur simultaneously at the same offset.
As a result, employing parity can be utilized separately for
both types of correctness guarantees simultaneously.

However parity and logs cannot simply substitute each
other’s functionality due to multiple in-place writes within
the update workflow. It is still challenging to guarantee
data correctness with only parity redundancy: 1) Multiple
inconsistency: Multiple in-place updates on PM in existing
transactional update workflows can result in potential multiple
inconsistencies, which cannot be recovered by parity. 2) Incon-
sistency detection without logs: Implementing inconsistency
detection and recovery without introducing extra overhead to
the update workflow remains challenging without logs.

III. CODEPM DESIGN

We propose CodePM, a log-free fault-tolerant PM trans-
action framework with parity-based crash consistency. We
carefully design the update workflow to remove logs without
compromising consistency (Section III-A). We further design
optimistic inconsistency detection based on speculative scan
recovery without logs (Section III-B). Finally, we discuss
the reliability of CodePM compared to log-based strategies
(Section III-C).

Log-Based . ,
(]]
[
CoH BN =
@persist log E; @ update new data & new pdrity E;’
A =
PM S 2 R |__V—____ _________ T
| I |
O A N
I Redo Log : bl Data Parity | |
_______ § bomeeme o 2EEY 0
CodePM ' '
CUEN | I D
@ updaté new data E E @ update lnew parity 55
PM [~y -~~~ -——~- hiaininininiet: aiuint B
I)]
UM R |
! ; :
]]
. .

Fig. 3. Log-free update workflow in CodePM. The red extra SFENCE is
added to prevent data and parity concurrent updates.

A. Log-Free Consistent Update

Challenge: To ensure crash consistency during updates,
the write-ahead-logging strategy introduces additional write
overhead. It seems that using parity redundancy as a replace-
ment strategy is both natural and straightforward. However,
the update workflows in previous works [5], [7], protected
by logging, allowed for in-place writing back to new data
and corresponding new parity of any size and any region
within a single transaction. Suppose that in the log-free update
workflow, both data and parity become inconsistent due to
partial updates caused by crashes. Assuming a crash occurs
in such a simple log-free update workflow, due to non-atomic
writes, partial updates would lead to inconsistencies in both
data and parity. In this case, recovering data to a consistent
state becomes impossible, as the parity involved in decoding
is also not in the correct state. Therefore, the repairability of
parity does not align with the existing update workflow in the
absence of logs. Thus, simply removing logs undermines the
crash consistency during the update process, and affects the
fault-tolerance of other objects on the same offset.

Design: To narrow down the range of potential incon-
sistency in the log-free update workflow, we propose fine-
grained memory fences to enforce stricter ordering for both
data and parity in-place updates. Figure 3 illustrates a single
data block update using a single XOR parity system. In log-
based strategies like Pangolin, persisting the log precedes the
simultaneous updates to data and parity. This approach, even
for small-scale updates, necessitates concurrent modifications
across various columns, increasing the risk of potential incon-
sistencies. Therefore, the sequence of updates determines the
range of crash inconsistency. To reduce the number of columns
being updated simultaneously, we must impose additional
order requirements on concurrent updates. This limitation
ensures that potential crash inconsistency is confined within a
single column, aligning with the repair capabilities of parity.
The log-free update strategy in CodePM, as illustrated in
Figure 3, introduces an extra memory fence following data
(object and its checksum) updates. This enforces an order
that prevents simultaneous updates to both data and parity.

Consequently, any inconsistencies are restricted to a single
column. If a transaction commit requires updating multiple PM
data areas with the same offset on a stripe, CodePM must insert
additional memory fences to ensure that concurrent updates do
not occur across multiple data columns, thus preventing multi-
ple inconsistencies. In systems employing multiple parities, the
increased repair capability can relax the ordering requirements
to some extent. Specifically, in a system with p parities, no
more than p data columns with the same offset can be updated
simultaneously.

Contrary to intuition, the fine-grained fence design usually
does not introduce additional memory fences during the update
workflow. Prior studies have shown that excessive use of mem-
ory fences can harm system performance [10], while the fine-
grained fence design appears to trade more fences for fewer
PM writes in the update workflow. Although stricter ordering
may increase the need for extra memory fences for data and
parity updates, the absence of logging eliminates the need
for a fence dedicated to persistent logs. When multiple data
updates occur at the same offset, additional memory fences
are required to prevent concurrent data updates; otherwise,
multiple inconsistencies may arise. But updating the same
offset across multiple data areas simultaneously within a single
transaction is less likely, especially in PM systems where the
address space is significantly larger than in traditional memory
systems, further decreasing the probability. Consistent with
prior research [5], [7], [26], CodePM ignores the rare case
of simultaneous inconsistency and corruption. Hence, even
with the extension to multiple parities (e.g., Reed-Solomon
codes [25]), broken parities across several columns can be
reconstructed by re-encoding the consistent data. CodePM can
avoid the use of fine-grained memory fences for concurrent
updates of multiple parities. Therefore, compared to the log-
based strategy, CodePM’s log-free updates exhibit a relatively
stable number of memory fences.

Concurrent transaction updates. Pangolin and Libpmem-
obj do not strictly support concurrent updates. Concurrently
modifying a shared object may cause data inconsistency if one
transaction crashes. But Pangolin allows multiple threads to
execute transactions concurrently as long as they do not mod-
ify on the same object simultaneously [7], [11]. On the other
hand, parity columns protect multiple data columns, therefore
it is possible for parity columns to be modified by multiple
transactions simultaneously, which can lead to concurrency
safety issues. For efficient thread synchronization, Pangolin
proposes parity range-locks to ensure concurrency safety by
combining two update methods: 1) For small updates, take
shared ownership of a range lock and use the atomic XOR
instruction provided by modern CPUs to perform atomic parity
updates. 2) For large updates, take exclusive ownership of a
range lock and use vectorized instructions to perform ordered
updates. The design of CodePM can also be extended within
this framework to support efficient concurrent updates. How-
ever, RS codes for multi-parity are not supported by atomic
instructions. To address this, CodePM adopt a strategy that first
computes the delta parity for each column using SIMD within
the DRAM buffer. Subsequently, CodePM update the existing
old parity on PM through 8 B atomic XOR operations with

delta parity. For better system efficiency, compared to Pangolin
which uses 8 KB as the object size threshold, CodePM selects
256 B as the new threshold by comparing the performance of
the two concurrent parity update strategies. Moreover, Since
CodePM does not allow concurrent updates on multiple data
columns at the same offset, the scope of exclusive locking
must extend from parity to data columns. This larger lock
can also provide strict support for concurrent data updates.
If Pangolin is to support concurrent data updates, a similar
strategy needs to be introduced. Although a larger lock scope
may result in increased lock contention, the low probability of
these events makes their impact on performance acceptable.
Our experiments also indicate that the primary factor limiting
multi-thread scalability is the write traffic on PM. We plan to
improve the performance of locks in our future work.

B. Log-Free Crash Recovery

Challenge: While the log-free approach can reduce the
overhead of the update critical path, it introduces new chal-
lenges for crash recovery. Write-ahead logging enables recov-
ery after unplanned crashes by scanning all logging entries
to identify potential inconsistency and recovering inconsistent
objects through replaying or rolling back. In contrast, while
the parity-based strategy uses fine-grained memory fences to
limit the range of crash inconsistency during updates and
matches the repair capabilities of parity, comprehensively
detecting potential crash inconsistency without using logs
remains challenging. In order to detect the consistency state
without explicit logs, previous studies have relied on updating
additional flags on PM during updates [6], [9]. This approach
contradicts our target of reducing PM writes to improve service
performance. The goals of crash recovery in CodePM are the
following: 1) It can repair inconsistent data or parity after
crashes to ensure the atomicity of transactions. 2) Even in the
rare case of unrecoverable errors (simultaneous corruption and
inconsistency), CodePM must comprehensively detect them to
prevent silent and erroneous recovery.

Design: To avoid extra update overhead, we propose specu-
lative recovery, which reuses checksums and parity, two redun-
dancies that are originally used for corruptions, to help detect
the consistency state of data and parity during crash recovery.
Speculative recovery is an optimistic strategy that performs a
complete scan on data and parity space after crashes, reusing
checksum verification and parity to determine the consistency
state of the data and parity. By leveraging existing system
components, speculative recovery avoids additional update
overhead.

Specifically, the process of speculative recovery consists
of two parts. The first part is checksum reuse. CodePM
first reads a complete stripe on PM into the dram buffer.
Since the commit phase concurrently updates both checksums
and objects that cross-verify each other on the data column,
checksum verification can also detect crash inconsistencies
on the data column. However, as shown in Figure 2, the
limitation of checksum reuse lies in the fact that the parity
protects both the data and its checksums, resulting in a
lack of checksums for detecting inconsistencies in the parity

Recoverable

Not Recoverable

Parity

.
VAL —— @vAL@

GFA‘I’ :zté’:l @FAG

®FA€

¢ |

—
(=}
-~

2

)

£Ed
%

®FA€

(b)

©

Fig. 4. Log-free crash recovery in different data error scenarios. (a) inconsistency on data, (b) inconsistency on parity, (c) inconsistency and corruption on
data and parity respectively at the same offset, (d) & (e) multiple erroneous data at the same offset.

itself. Therefore, speculative recovery needs to be combined
with the second part, parity decoding reuse. First, if all the
data in the DRAM buffer passes the checksum verification,
CodePM uses this consistent data to re-encode and obtain new
parity. It then compares the new parity with the old parity.
If they are the same, it indicates that the parity on PM is
consistent. Otherwise, the parity on PM needs to be updated
with the newly re-encoded parity. Because the fine-grained
memory fence in the commit phase ensures that multiple
inconsistencies do not occur, if inconsistent data is detected in
the DRAM buffer, parity and other consistent data are used to
decode and obtain the new data. If the decoded data fails the
checksum verification, it indicates corruption on parity. This
suggests simultaneous cross-column errors, which exceeds the
repair capabilities of CodePM. CodePM needs to throw a
warning to the application. Speculative recovery traverses and
scans all the stripes on PM through these two parts to obtain
global data state information.

Figure 4 presents the recovery results of CodePM for
different data error scenarios during scanning:
Inconsistency on data. Figure 4a illustrates the process where,
upon detecting a checksum verification failure on object A
(phase 1), new object A is recovered by decoding consistent
object B and parity (phase 2). Next, the recovered object A
undergoes checksum verification (phase 3). If successful, it is
written back to the original location of object A (phase 4).
Inconsistency on parity. Figure 4b shows the case of inconsis-
tent parity. Using the consistent data that passed the checksum
verification (phase 1), the new parity is re-encoded (phase 2).
Comparing the two parities determines if the stored parity is
consistent. If not, the new parity updates the inconsistent parity
(phase 3).
Inconsistency and corruption on data and parity respectively
at the same offset. Figure 4c presents an example of both
erroneous data and parity. First, similar to phase 1 in Fig-
ure 4a, an inconsistent object A is detected through checksum
verification. But in phase 2, the new object A derived from
decoding computation cannot pass the checksum verification
(phase 3), indicating that the parity is also inconsistent.
Multiple erroneous data at the same offset. Figure 4d and
e illustrate scenarios of multiple erroneous data, such as
simultaneous corruptions or both inconsistency and corruption.
When errors span multiple columns, checksum verification
during phase 1 can detect these as unrecoverable.

Multi-parity speculative recovery. CodePM extends spec-
ulative recovery to multi-parity systems by multi-path de-

coding. Multi-parity speculative recovery differs by offering
multiple decoding paths when inconsistencies are detected.
Phase 2 in Figure 4(a) will involve multiple paths. For
instance, in a system with two parity columns, if an data
inconsistency is found, decoding can proceed using either p;
or po, along with other consistent data columns. Due to the
uncertain consistency of the parities, each newly decoded data
along every path must be verified with the decoded checksum.
If verification fails, it indicates that the parity column used in
that decoding path is inconsistent and requires updating. For
load balance, we employ a simple round-robin approach to
select the decoding path. Regardless of the number of parities,
CodePM will perform the same re-encoding to determine if
these parities match and consistent.

Instant Recovery. Speculative recovery scanning, due to
its time-consuming nature, can obstruct and delay online
foreground services, undermining the benefits of data per-
sistence. To achieve instant recovery, we propose to deploy
speculative recovery as a background task, accepting transient
degraded reliability as a trade-off. CodePM distinguishes itself
from systems that necessitate full-space scans for maintain-
ing service continuity, such as those involved in recovering
volatile indexes [27]. CodePM lacks only the consistency
state of the global space compared to PMDK Libpmemobj
and Pangolin. However, thanks to persistent checksums and
parity redundancy, CodePM can continue services within
milliseconds of reading persistent metadata with degraded
reliability. Due to the incomplete scanning performed after
CodePM’s instant recovery, there may be inconsistent data or
parity that requires repairing, leading to degraded reliability for
data at the same stripe offset. In the degraded state, CodePM
necessitates additional checksum verification for each read to
ensure data correctness and determine if repairs are needed.
This degraded state can only be recovered after speculative
recovery through a complete scan. The speculative recovery
process can amortize overhead by running in the background.

C. Reliability Analysis

CodePM offers fault-tolerance comparable to the state-of-
the-art framework Pangolin, and ensures crash consistency for
transactions. Although after instant recovery, the system is
under a reliability-degraded state, it does not affect the ultimate
reliability. The issue not addressed in Section III-B is the
simultaneous inconsistency and corruption at the same offset.
First, Pangolin cannot handle such a situation. For instance,
if both the updated data and parity are inconsistent while

cycles (1000)

cycles (1000)

cycles (1000)

cycles (1000)

a 256 B 512 B 1 KB 2 KB 4 KB

= 750 1000 1000 i

2] 500 G000) 4

3% 500 #

S 4

T 250144 so00e - 250 ; cobes : °00 cosscsesecscesey 2507/ >0

> OO (COOTCOTOOOTOCOCH

g |f g f ,

2 f ——t— 0 f L — 0 f L — 0 L — f 0 1 f

5 1 2 3 4 5 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5

cycles (1000)

—e— temoral store

non-temoral store

Fig. 5. The reduced latency achieved by moving the memory fence to after tasks that consume a specific number of CPU cycles.

other data at the same offset are corrupted, recovery becomes
infeasible. Even though logging can recover the updated data,
the corrupted data at the same offset cannot be recovered by
the inconsistent parity. Similarly, although CodedPM limits
multiple inconsistencies, it still fails if both corruption and
inconsistencies occur simultaneously at the same offset and the
number of their columns exceeds p. This scenario surpasses
the recovery capability based on decoding.

However, previous research argued that in an large PM
memory address space, the probability of random corruption
and crash inconsistency occurring at the same offset is ex-
tremely small. As a result, they overlooks the possibility of
simultaneous crash inconsistency and corruption [5], [7], [20].
This is because data corruption primarily stems from uniform
small-probability errors (10~9 to 10~%) [5], [28]. On the other
hand, crash inconsistency arises from interruptions during non-
atomic updates. The potential inconsistency is limited to the
updated range at the moment of the crash, which is a very
small fraction relative to the entire space.

IV. PIPELINED CODEPM

To delve deeper into the implications of memory fences
in the log-free updates with the asynchronous memory I/O
protocol, we designed experiments to observe how memory
fence placement affects access to PM (Section IV-A). Driven
by the findings from the experiments, we propose pipelined
encoding and persistent writing by carefully adjusting the
order of instructions to hide update latency (Section IV-B).

A. Memory Fence Blocking Effects

Although the log-free update significantly diminishes write
traffic in the update critical path, it still has limitations stem-
ming from memory fence effects. Fine-grained memory fences
also diminish the parallelism between data and parity updates.
The Intel DDR-T asynchronous memory protocol offers a
set of asynchronous instructions to ensure the persistence
of data on PM, such as CLWB and CLFLUSHOPT, which
can asynchronously flush data from the CPU cache to PM
media [1]. We refer to the data that has been flushed but
not yet arrived at PM media as in-flight writes. Similar to
fsync () in file systems, SFENCE acts as a memory fence
to block subsequent memory writes until all previous in-flight
writes are completed. As a result, strategically scheduling
instructions while ensuring data persistence emerges as a
critical determinant of PM system performance. For instance,

Algorithm 1 Measure memory fence effects
Require: addr, len, cycles

1: pos =0

2: while pos < len do

3: mov 0x00, [addr + pos|; // Temporal store
clwb [addr + pos];
// Line 3 and 4 can be replaced by nt-store (movnti)
Insert memory fence here
busy_waiting(cycles)
Or insert memory fence here

9: pos = pos + 64;
10: end while

® Nk

recent research highlights that the frequency of SFENCE
operations profoundly influences PM system concurrency [10].
Moreover, the lazy and batch flushing techniques have been
proposed to diminish the average flush latency [29]. Although
the log-free strategy in CodePM reduces PM write traffic, it
does not decrease the number of memory barriers. Instead, it
limits the concurrency of data and parity updates. It is worth
mentioning that asynchronous memory I/O is still necessary
for PM, as the memory access latency of PM is still higher than
that of DRAM, and synchronous I/O protocols would result
in more CPU cycles being wasted waiting for slow memory
I/O completion. Therefore, not limited to the DDR-T protocol,
other slow memory platforms like CXL also provide similar
operations to guarantee consistency, such as global persistent
flush (GPF).

Since the log-free strategy in CodePM relies on fine-grained
memory fences to ensure crash consistency, simply reducing
the number of fences is not feasible. To further study the
impact of memory fences and flush instructions, we first design
a micro-benchmark to understand how memory fences affect
system performance. Algorithm 1 shows how we quantify
the latency difference with respect to fence positions. This
benchmark continuously performs persistent write operations
to a random aligned address on PM, with each persistent write
consisting of either an non-temporal store (e.g., MOVNTI) or
a temporal store (e.g., MOV) followed by a flush (e.g., CLWB).
After each persistent write is completed, we use RDTSC
instruction to idle in a for-loop for a specified number of CPU
cycles to simulate time-consuming tasks, before initiating the
next persistent write. We observe the impact on the average
latency by inserting the memory fences (e.g., MFENCE) asso-
ciated with each write before or after the for-loop.

o E] delta | parity | '
<—object size—» ! @ !
[daa |; Vanil | parity J:

! anilla !
. . Pipelined } _____________
[[defta] | i[lpafity] |

S S S

| [data| [+ [[parity] |i

----Fence {lFlush [JEncoding [JPersistentwriting

Fig. 6. Pipelined encoding and persistent writing. The red box represents
foreground encoding, whereas the blue box represents background persistent
writing.

Figure 5 shows the average results of 1 million executions
for each, demonstrating that moving memory fences after the
for-loop noticeably reduces the average latency. The extent
of latency reduction is related to the object size, the waiting
time within the for-loop, and the number of channels. For
non-temporal stores, moving the memory fence to a later
position linearly reduces latency until time-consuming tasks
completely mask the latency of persistent writes, achieving
peak efficiency. For temporal writes, latency reduction is more
noticeable with smaller access sizes, yet fluctuations increase.
This occurs because temporal writes necessitate pre-reading
data into the cacheline, which is a slower process and is also
influenced by the random cache policy. The insight behind the
experiment results is that after executing asynchronous persis-
tence instructions, data is written to PM in the background
and the CPU can execute other instructions in the foreground.
This benchmark reveals that the impact of memory fences on
system performance is not only related to the number, but
also depends on the number of in-flight writes that have to
wait due to memory fences. Despite executing same tasks and
ensuring the same level of crash consistency, the arrangement
of persistence-related instructions still markedly influences
instruction execution concurrency, thereby affecting system
performance. This effect is particularly significant in fault-
tolerant systems with parity redundancy, as the additional
compute-intensive tasks heighten CPU resource demands,
amplifying the role of instruction execution concurrency on
overall system performance.

B. Pipelined Encoding and Persistent Writing

Challenge: In Pangolin and Pavise [5], [7], new data is
initially buffered and encoded in DRAM to generate the
corresponding parity. Subsequently, both the new data and
parity are persisted on PM. However, encoding before flushing
in this manner results in the memory fence for the persistent
write operation having to wait for all just-issued asynchronous
persistent write instructions for data and parity to complete. As
a result, a notable blocking overhead arises and may further
increase with the size of the updated object. This increased
number of in-flight writes leads to wasted CPU cycles waiting.
This finding prompts us to further improve the system’s overall

t

performance by reorganizing the default positions of flush and
memory fence instructions in log-free updates.

Design: To hide update latency, we propose pipelined en-
coding and persistent writing strategy to minimize the number
of in-flight write requests that need to be wait due to memory
fences. Simply delaying memory fences is insufficient to effec-
tively extend the flight window of PM write requests, resulting
in limited optimization potential. Therefore, we approach our
pipeline strategy from two perspectives. First, our approach
seeks to prioritize independent computational tasks, and delay
the memory fences until post-completion, thereby postponing
the window’s end point. Second, the data no longer required
for subsequent computation should be flushed as early as
possible, thereby moving the window’s start point forward.

Figure 6 illustrates the differences between the vanilla
encoding before flushing and the pipelined approach. To
prioritize independent computational tasks, we first collect and
apply updates to data columns that do not need computation.
This is followed by the calculation of delta data and delta
parity in the DRAM buffer. A memory fence is then used
to ensure the persistence of data writes, and the delta parity
then facilitates persistent updates to the parity columns with
another memory fence. Through this design, we shift a part
of the computational operations, previously executed post-
memory fence, to the window preceding the fence. To initiate
early data flushing, we first observe that the object size and
flushing granularity (64 B) are typically distinct [7], [30],
which offers an opportunity to pipeline the update process
by early cacheline flushing. The flush granularity is cacheline
size (64 B), and there is no interdependency between different
64 B units within an object. Consequently, after the encoding
of a preceding 64 B unit is completed, it can be immediately
flushed to PM, without the need to wait for the entire object’s
encoding to be completed.

The idea of pipelining is prevalent, such as CPU instruction
pipelines and network communications. Nevertheless, previous
studies, such as batch flushing [29], have overlooked the
potential of leveraging asynchronous memory I/O to construct
pipelines. We leverage early flushing and encoding to extend
the time interval between issuing a write request to PM
media and the subsequent blocking by a memory fence,
reducing the queue of pending write requests ahead of the
memory fence. The parity-based PTM introduces additional
computational encoding tasks compared to traditional I/O-
intensive systems. Hence, the pipeline optimization strategy
manifests its effectiveness by allowing CPU encoding tasks
to proceed in the foreground while simultaneously performing
background flushes of pending writes to PM. In summary, the
pipeline strategy efficiently leverages asynchronous memory
I/O protocols to boost the instruction-execution parallelism.

V. IMPLEMENTATION

Pangolin architecture. Pangolin [7] is a transactional pro-
gramming library designed for PM to provide fault-tolerance.
It is built upon Libpmemobj transactional library of PMDK [7]
by introducing object-granularity checksums and RAID-4 style
XOR parity to prevent data corruption. Since Pangolin is

derived from PMDK Libpmemobj [11], it supports a series of
PMDK benchmarks. Pangolin creates multiple 16 GB zones
within a specified PM pool on PMDK, with each zone divided
into several columns. Metadata is persistent at the head of
the related structures. The computation-based determination of
parity addresses, using the logical memory address relationship
between parity and data, eliminates the need for additional per-
sistent metadata in Pangolin. During the transaction, Pangolin
creates a dedicated DRAM micro-buffer for each modified
data region to facilitate subsequent operations. The micro-
buffer is reused within a buffer pool, minimizing the over-
head associated with frequent allocations and deallocations.
Throughout the transaction process, applications can only
obtain pointers to the DRAM buffer, and are not allowed direct
access to PM addresses. These write requests intended for
PM are accumulated and then collectively committed at the
end of the transaction. During the commit phase, Pangolin
ensures crash consistency for subsequent PM updates by first
writing replicated redo-logging. These logs serve the purpose
of recording the changes made during the transaction. The
purpose of these logs is to document data modifications within
the transaction, without logging parity changes. Subsequently,
new checksums and new parity are calculated and written
back to PM with new data. When a new object is written,
it is appended to the initialized zero-value tail region, thereby
obviating the need for logging. Logging becomes necessary
only during object updates.

Modifications of CodePM. To demonstrate the effective-
ness of CodePM, we extended Pangolin to implement log-free
and pipelined variants. We mainly modified Pangolin commit
process after the ends of transactions. The original Pangolin
commit process computes new parity and new checksums on
the DRAM buffer, and then flushes modified areas back to
PM address with replicated redo-logging. As mentioned in
Section III and IV, our modifications in Pangolin include:
1) eliminating PM writes for creating and cleaning logs in
updates, 2) inserting extra memory fences between persis-
tent writes of data and parity, 3) integrating the encoding
and persistent writing processes that were originally separate
through the pipeline strategy. CodePM keeps the same the
policies for checksum and parity computation and verification
in Pangolin. CodePM incurs no extra overhead for persistent
metadata management. We have extended both systems to
include support for multiple parities using RS codes.

Pangolin offers a set of transaction APIs for applications
to invoke. pgl_open () and pgl_tx_add_range () are
used to create and designate DRAM micro-buffers correspond-
ing to updated objects, while pgl_commit () serve as the
transaction commit point for redo-logging and the update of
checksums, data and parity. Our modifications focus on the
commit process to reduce log overhead. We remove logs for
object update transactions and eliminate log reclamation over-
head after transaction completion. To ensure crash consistency,
we separate the updates for new data and new parity, and
use additional memory fences to control their sequencing. To
improve execution efficiency, we extended the Intel ISA-L
library [31], a SIMD-optimized low-level assembly library, to
insert persistence-related instructions during encoding. In sce-

narios requiring extra buffers, the existing object buffer pool
is re-utilized to reduce the memory allocation and deallocation
overhead.

Speculative recovery performance. The optimistic specu-
lative recovery prevents extra overhead of updates but incurs
higher loads for recovery. While maintaining consistency-
related metadata on PM can alleviate the load during recov-
ery [6], CodePM emphasizes minimizing additional update
overhead to maximize update performance. We observed that
during speculative recovery, most of the time is spent on read-
ing PM and re-encoding. Only inconsistent data or parity needs
to be overwritten. Previous studies have showed that both the
read performance of PM and CPU computation resource are
relatively sufficient and scalable [1]. While CodePM requires
a lot of extra computation compared to existing full-space
scanning recovery [27], since there is no dependency between
stripes during recovery, we can distribute the recovery task
across different cores to achieve better scalability. Considering
the slower read speed of PM relative to encoding throughput,
and the fact that the targets of upcoming scans are predeter-
mined, recovery throughput can be further enhanced through
software prefetching. Ultimately, CodePM, with inter-stripe
parallelization and software prefetching, can achieve speeds
comparable to systems relying solely on scanning reads for
crash recovery.

VI. EVALUATION

A. System Setup

Hardware configurations. Our hardware testbed is a Linux
4.15.0 server with Intel Xeon Gold 6240 @ 2.60 GHz with 18
physical cores. Each CPU socket has 6 channels of 192 GB
DRAM and 128 GB Intel Optane DCPMM with AppDirect
mode. Except where noted, we conducted all experiments
across all 6 memory channels. Guided by prior studies [1],
[15], we limited our evaluations to a single CPU socket to
avoid NUMA access penalties. To ensure stable hardware
performance across multiple experiments, we also disabled the
CPU dynamic boost frequency and C-state.

System configurations. Pangolin [7] is developed based on
Intel PMDK Libpmemobj [11]. We implement two variants
of CodePM with proposed optimizations to study the impact
of different strategies. CodePM removes logs from Pangolin
with fine-grained memory fence, while CodePM-P deploys the
pipelined strategy to exploit instruction parallelism. CodePM
and Pangolin maintain alignment on transaction atomicity,
data correctness, and vectorized acceleration instructions. Note
that the baseline, Pangolin, across all benchmarks, refers to
Pangolin-MLPC with Metadata replication, Log replication,
Parity, and Checksum. We additionally removed all logs in
Pangolin as another baseline (Pangolin-nolog). Pangolin-nolog
only uses one memory fence after a complete transaction has
ended, so it cannot guarantee the crash consistency of data and
parity. By default, a stripe in the encoding scheme consists of
10 columns, including 1 parity column. Read verification is
disabled. All benchmarks are compiled with O3 optimization.
We used IPMCTL [32] to record read/write traffic of PM.

seq. obj overwrite

rand. obj overwrite

map update

LT 10
D>
£25 5
<9
<0 0
256B 512B 1KB 2KB 4KB 256B 512B 1KB 2KB e e Q e e (oL
& & ¥ (€ e |
obj size (B) obj size (B) & T T T o
& S
uTn:le
g ° 5
= 0 0
256B 512B 1KB 2KB 4KB 256B 512B 1KB 2KB 4KB e e Q e® e <k
e e QY (€ CadAC)
obj size (B) obj size (B) o e o
@A Pangolin EEN Pangolin-nolog [CodePM I CodePM-P

Fig. 7. PMDK transaction benchmark performance.

B. Micro-Benchmark Results and Analysis

1) Object overwrite transactions. Figure 7 measures the
PMDK transaction performance. In the object overwrite trans-
actions of the PMDK benchmark, 1 million objects of a
specified size are created on PM. Subsequently, these objects
are then modified using the library’s transaction interface, with
transactions being committed at the end. In Pangolin, two
encoding strategies are provided for transaction concurrency:
SIMD vectorized instructions with locks and atomic XOR
instructions. In AVX512 SIMD coding, it is observed that
CodePM offers a substantial latency reduction by 55.8-67%
across various object sizes, similar to Pangolin-nolog. This im-
provement stems from the significant log overhead in Pangolin,
which includes writing two replicated logs and cleaning them
to zero. Relative to Pangolin-nolog, CodePM incurs a slight
increase in latency, attributable to diminished parallelism in
handling data and parity updates. CodePM-P decreases latency
by 9.9-18.4% compared to CodePM by exploiting instruction
parallelism. This performance improvement is especially sig-
nificant for small object sizes, where the optimization benefits
are accentuated due to a higher frequency of memory fences
and diminished parallelism associated with such objects. In
object random overwrite transactions, the logging overhead
of sequential writing is minor when compared to the cost
associated with the random writes of data and parity. Con-
sequently, with smaller object sizes, the performance gains
realized through CodePM are less pronounced, leading to
a diminished latency reduction ranging from 41.2-43.1%.
Moreover, CodePM-P, in comparison to CodePM, can further
decrease latency by an additional 9.2-13.5%.

On the other hand, in atomic coding, CodePM’s latency
reduction ratio is 41.0-57.0% in sequential object overwrites,
and 35.5-36.3% in object random overwrites. Compared to
CodePM, CodePM-P demonstrates a latency reduction ranging
from 14.2% to 23.8% for smaller data sizes (256 B). This
improvement surpasses that of AVX512 coding due to the low
efficiency of atomic coding, which enhances the latency hiding
effect in the pipeline strategy of CodePM-P. This indicates
that the effect of the pipeline strategy is highly correlated

with the computation latency. Similar to AVX512 coding, the
optimization of CodePM-P deteriorates with large object sizes,
especially during sequential writes. In Pangolin, a threshold of
8KB was set for switching from SIMD to atomic mode, based
on the performance comparison between Libpmemobj replica-
tion and Pangolin’s atomic mode. Our experiments showed that
with AVXS512 vectorization, AVX512 mode surpassed atomic
mode for objects larger than 256 bytes. Thus, a 256B threshold
for switching parity computation strategies was established for
better performance in the following experiments.

2) Map update transactions. We insert and randomly up-
date 1 million 256 B objects into various data structures
with PMDK benchmarks, including btree, ctree (crit-bit tree),
hashmap, rbtree (red-black tree), rtree (radix tree), and skiplist.
CodePM mitigates average latency across them by 28.7-
42.4%. Furthermore, CodePM-P offers additional optimiza-
tions in average latency by 3.7-9.5%. Compared with object
overwrites, these data structures involve more complex inter-
nal operations, such as indexing before updating. A single
transaction may trigger multiple persistent writes, such as
updating counters in hashmaps. Consequently, separating data
and parity updating in log-free updates may adversely affect
cache efficiency, leading to less significant enhancements.

3) Performance under different system configurations. Fig-
ure 8 illustrates the object random overwrite transactions
performance under different encoding parameters and numbers
of PM channels. First, similar to previous research findings
[5], we observe that the width of stripes does not significantly
affect the performance. This can be attributed to the fact that
the stripe width does not alter the number of PM /O operations
or computation tasks. Second, more memory channels directly
enhances the PM write bandwidth, facilitating the distribution
of large 10 requests across multiple channels and improving
average latency. Nonetheless, CodePM’s optimization primar-
ily targets reducing writes, leading to diminishing its benefit
with multiple channels. But since the utilization of multiple
channels for most I/O operations is limited, CodePM maintains
high efficiency. The benchmark results of 2 parities indicate
that the latency reduced by CodePM drops to 41.4-60.0%.
This is due to the decreased proportion of log writes in the

n=10, p=1 n=100, p=1

n=10, p=2 n=100, p=2

1 Channel
latency (us)
-
o

o

256B 512B 1KB 2KB 4KB
obj size (B)

256B 512B 1KB 2KB 4KB
obj size (B)

- 256B 512B 1KB 2KB 4KB
obj size (B)

256B 512B 1KB 2KB 4KB
obj size (B)

iy
o

6 Channel
latency (us)
w

0.
256B 512B 1KB 2KB 4KB
obj size (B)

256B 512B 1KB 2KB 4KB
obj size (B)

B Pangolin

=3 Pangolin-nolog

0.
256B 512B 1KB 2KB 4KB 256B 512B 1KB 2KB 4KB

Fig. 8. PMDK object random overwrite transaction benchmark performance under different system configurations.

256 B 512 B 1 KB 4 KB
N4 H a
v 4 /- 2
a) / 0.5
T T Ty
o5 o5 (B 0
248 16 248 16 24 8 16 248 16
threads threads threads threads

—e—Pangolin —+—Pangolin-nolog —+—CodePM ——CodePM-P

Fig. 9. Object random overwrite transaction scalability.

(a) 256 B (b) 4 KB
1 0,
s 00%
o 75%
2
S 50%
©
g 25%
=
256 B 256 B
Bl Pangolin [CodePM Bl CodePM-P

Fig. 10. The PM write traffic of object overwrite transactions.

total write operations during the update process Meanwhile,
more parity columns elevates both the computational tasks
and PM writes. This increases the optimization space of
the pipeline strategy, allowing more tasks to be efficiently
hidden. As a result, in comparison to CodePM, the latency
reduction realized by CodePM-P is enhanced to 14.5-21.2%.
In summary, our proposed strategies significantly optimize
performance across diverse system configurations.

4) Scalability. Figure 9 presents the object overwrite trans-
action scalability in SIMD coding with varying object sizes
and the number of threads. Comparing peak throughput,
CodePM achieves a 208-335% performance improvement
over Pangolin by eliminating logging. This significant en-
hancement is primarily due to alleviating the PM write
bandwidth bottleneck, a critical factor that is exacerbated by
higher levels of concurrency. The removal of logging reduces
write traffic, which in turn, substantially improves throughput

obj size (B) obj size (B)
= CodePM BN CodePM-P
g n=10, p=1 n=10, p=2
£ 100% P P
'E o [0 other
g 75% B parity
.; 50% B4 data
% 5% =3 csum
2 @A log
S 0%
K e O & e O &
(\q o 060 éz (\q o 060 éz
Q0 O (Jo6 Q@ C (Joé

Fig. 11. Overhead breakdown of object overwrite transaction commits.

performance. Moreover, due to the limitations imposed by
write bandwidth, Pangolin’s throughput performance quickly
reaches the saturation point and subsequently declines. At this
juncture, CodePM is able to deliver a performance that is up to
541% of Pangolin’s throughput. The rapid degradation of log-
based systems is further exacerbated by the load imbalance
across multiple memory channels. This results in a perfor-
mance bottleneck during log writing, especially under high
concurrency conditions. At lower write loads, CodePM-P ex-
hibits marginally superior performance compared to CodePM.
However, their peak throughput remains comparable, which
can be ascribed to their analogous write traffic.

C. Write Traffic Analysis

Figure 10 shows the normalized write traffic observed on
the PM media for each aligned object overwrite transaction
request. CodePM generates about 43% of write traffic com-
pared to Pangolin at 256 B and about 33% at 4 KB. Pangolin
maintains replicated redo-logging, which leads to 2 writes for
logs, 2 writes for data and parity, and 2 writes for cleaning
logs. In contrast, CodePM only needs to update data and
parity, saving 2/3 of write traffic, consistent with the results at
4 KB. On the other hand, the ratio of write traffic reduced by
CodePM at 256 B decreases. The reason is that log cleanup
writes are spatial locality friendly under low write loads.
Therefore, a part of writes only touches the on-chip write
buffer of PM, rather than directly accessing the PM media. In

n=10, p=1 n=10, p=2
w4 w4
2 2
9 9
g2 £2
Bl -
o) o}
0 0
95:5 80:20 70:30 50:50 0:100 95:5 80:20 70:30 50:50 0:100
read/write ratio read/write ratio
I Pangolin Pangolin-nolog I CodePM I CodePM-P
Fig. 12. YCSB benchmark performance on a transactional hashmap.
256 B 1 KB 2 KB 4 KB . (a) 1 channel (b) 6 channels
4 = = Q¢ N e — g
2 g N 30 Ny
i / // 1.0 o0 %4*/ S S 20 /('/.
) [
Q5 A 0.4 2 '/
g)/'M e N 0.51¢ 52 10 o=
% "tg.;. W"i".“n 0.2 i d § M
0+ 0+ 0+ 0.0 £o0 01—
24 8 16 24 8 16 24 8 16 24 8 16 2 4 6 8 1012 14 16 18 2 4 6 8 1012 14 16 18
threads threads threads threads threads threads
—e— Pangolin Pangolin-nolog —&— CodePM —4— CodePM-P —e— 256B 512B —— 2KB —— 4KB

Fig. 13. YCSB update transaction scalability.

addition, CodePM-P has slightly higher write traffic compared
to CodePM. This may be attributed to the pipeline strategy
causing more dispersed write requests. A small portion of 64
B writes cannot be merged into the 256 B granularity of the
DCPMM XPLine, resulting in slight write amplification [15].

D. Overhead Breakdown Analysis

Figure 11 shows the overhead breakdown from different
operations during the commit phase of random 4 KB object
overwrite transactions. We utilized the perf tool with the
frame pointer register to observe the overhead introduced
by different system components. In Pangolin, the processes
of log writing and cleaning significantly contribute to the
duration of the transaction commit phase. As a result, CodePM
substantially improves the overall system efficiency by elimi-
nating logging. Without logs, the parity overhead in CodePM,
attributed to parity reading, computation, and updating, consti-
tutes approximately half of the total overhead. Updating parity
is slower than updating data because the data update operation
itself does not require reading from PM, whereas updating
parity first necessitates reading from the PM. However, in
the pipeline data version of CodePM, the data overhead is
markedly reduced to approximately 10%. The reason for this
reduction is that the data update’s fence blocking effect is
delayed to include the parity updates, thereby aligning the
overhead with only the foreground duration of asynchronous
data flushes, rather than the entire duration of writing to PM.

E. Macro-Benchmark Results and Analysis

To further evaluate with real-world workloads, we used
YCSB [12] to generate key-value workloads with real-world
patterns. We first implemented a simple transactional key-
value storage engine using hashmap-tx in Libpmemobj to

Fig. 14. The speculative recovery scanning throughput.

handle requests generated by YCSB. We used the default set-
tings of YCSB to generate workloads in the zipf distribution.

Figure 12 presents the average latency of 256 B objects for
varying ratios of read and write operations. The optimization
strategies employed by CodePM are specifically designed to
reduce the overhead associated with write operations. As a
result, the performance improvements of CodePM’s optimiza-
tions become more pronounced as the write ratio increases,
demonstrating enhancements ranging from 1.1-45.2% as the
update rate escalates from 5% to 95%. Furthermore, CodePM-
P, compared to CodePM, achieves a latency reduction of
4.6-14.7%. In the typical write-intensive scenario of YCSB
workloada, with a read/write ratio of 50:50, CodePM and
CodePM-P reduce the KVS latency by 38.9% and 45.3%,
respectively, when compared to Pangolin. As the number of
parity columns increases, the optimization impact of CodePM
does not decline as significantly as that observed with object
overwrite transactions. Nevertheless, CodePM-P still offers
larger optimization benefits, ranging between 5.6-16.9%.

As shown in Figure 13, the throughput scalability of KVS
under different strategies resembles the patterns we observed
in the PMDK object overwrite benchmark. This similarity is
largely attributable to CodePM’s ability to markedly reduce
PM writes for logging, thereby enhancing throughput by 225-
350%. In contrast, Pangolin experiences a rapid saturation,
followed by performance degradation.

F. Speculative Recovery Performance and Analysis

Although CodePM’s instant recovery can quickly restart
services after crashes, its reliability is still degraded during
the recovery scanning window. To explore the recovery time of
CodePM, Figure 14 shows the scalability of recovery scanning
throughput under different hardware configurations. In a single
channel, the throughput can exceed 6 GB/s, close to the

device’s performance limit. Meanwhile, with 6 channels, the
throughput can exceed 30 GB/s at peak. This means that
recovery from the transient degraded state takes less than 30
seconds on our platform. The results indicate that log-free
recovery can restore reliability with small background time
investment after instant recovery.

VII. RELATED WORKS

Persistent Transactional Memory. Since x86 atomic write
instructions are limited to 8 B, previous studies introduce
undo or redo logging before in-place updates for PM crash
consistency [11]. To mitigate the logging overhead on PM,
various methods have been proposed. MorLog [17], Clob-
berNVM [18], and JustDo [33] reduce log writes by elimi-
nating redundancy between log entries. DUDETM [3], TIME-
STONE [34], and ASAP [35] reduce logging within the critical
path using techniques decoupled logging, asynchronous log-
ging, and group commit. These studies improve update per-
formance specifically by optimizing the logging itself. On the
other hand, Romulus [9] utilizes extra system redundancy to
reduce logging overhead. It maintains primary-backup replicas
to ensures crash consistency through synchronized replicas,
thus eliminating the need for logging overhead. CodePM
distinguishes itself from these works by utilizing additional
system redundancy to achieve both crash consistency and fault
tolerance.

Fault-Tolerant PTM. Memory errors arise due to device
defects or write disturbance [7], [21]. To address this, several
mechanisms have been developed to provide error correction,
such as ECC [36] and RS-Code [37]. However, these methods
focus only on protection at the device level while ignore
system-level faults. [7]. Consequently, a series of works have
provided system-level fault-tolerance for crash-consistent PTM
by replication or parity. /) Replication: Libpmemobj-R and
TENET ensure fault-tolerance through replicated PM pools
and replicated logs on SSDs respectively [11], [26]. Kamino-
Tx [6] uses chain-replicas to provide fault-tolerance and crash
consistency, but still needs extra writes for inconsistency detec-
tion. Meanwhile, these replication strategies introduce higher
space overhead. 2) Parity: NOVA-Fortis [20] and Pangolin [7]
use XOR parity and checksum to provide fault-tolerance with
lower space overhead. TVARAK [38] and Vilamb [19] reduce
the parity update overhead through novel hardware controllers
and asynchronous parity updates respectively, but they intro-
duce issues related to hardware modifications or reliability
degradation. Pavise [5] co-designs crash consistency and fault-
tolerance with minimal development efforts but underperforms
compared to Pangolin. CodePM identified a functional overlap
between two types of system redundancy and proposed parity-
based consistency to fully eliminate logging overhead, thereby
improving system performance.

VIII. CONCLUSION

Existing fault-tolerant PM systems suffer from significant
writes due to logs for crash consistency. This paper proposes
CodePM, a fault-tolerant transaction framework for PM that
utilizes parity-based crash consistency to remove logs during

updates. CodePM reuses the decoding capability of parity
to simultaneously recover crash inconsistency. To guarantee
data correctness, CodePM utilizes fine-grained fence and spec-
ulative recovery in updates and recovery. Additionally, we
propose pipelined encoding and writing to hide update latency.
Evaluation results show that CodePM achieves up to 3.4x
throughput compared to the log-based strategy.

REFERENCES

[11 J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in Proceedings of the 18th USENIX Conference on File and Storage
Technologies, 2020, pp. 169-182.

[2] C. Ye, Y. Xu, X. Shen, Y. Sha, X. Liao, H. Jin, and Y. Solihin,
“Specpmt: Speculative logging for resolving crash consistency overhead
of persistent memory,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2023, pp. 762-777.

[3] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“Dudetm: Building durable transactions with decoupling for persistent
memory,” in Proceedings of the 22nd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017, pp. 329-343.

[4] T. David, A. Dragojevic, R. Guerraoui, and I. Zablotchi, “Log-free
concurrent data structures,” in Proceedings of USENIX Annual Technical
Conference, 2018, pp. 373-386.

[5] H. J. Qiu, S. Liu, X. Song, S. Khan, and G. Pekhimenko, “Pavise:
Integrating fault tolerance support for persistent memory applications,”
in Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, 2022, pp. 109-123.

[6] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan,
K. Strauss, and S. Swanson, “Atomic in-place updates for non-volatile
main memories with kamino-tx,” in Proceedings of the Twelfth European
Conference on Computer Systems, 2017, pp. 499-512.

[7]1 L. Zhang and S. Swanson, “Pangolin: A fault-tolerant persistent memory
programming library,” in Proceedings of USENIX Annual Technical
Conference, 2019, pp. 897-912.

[8] P. Shang, S. Serish, and J. Wang, “Traid: Exploiting temporal redun-
dancy and spatial redundancy to boost transaction processing systems
performance,” IEEE Transactions on Computers, vol. 61, no. 4, pp. 517—
529, 2012.

[9]1 A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms
for persistent transactional memory,” in Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures, 2018, pp.
271-282.

[10] Y. Xu, C. Ye, Y. Solihin, and X. Shen, “Ffccd: Fence-free crash-
consistent concurrent defragmentation for persistent memory,” in Pro-
ceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 274-288.

[11] Intel, “Persistent memory development kit (pmdk),” 2018. [Online].
Available: https://pmem.io/pmdk/

[12] B. E. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM Symposium on Cloud Computing, 2010, pp. 143-154.

[13] M. Kwon, J. Jang, H. Choi, S. Lee, and M. Jung, “Failure tolerant
training with persistent memory disaggregation over cxl,” in IEEE Micro,
vol. 43, 2023, pp. 66-75.

[14] Samsung, “Memory-semantic ssd,” 2022. [Online]. Available: https:
//samsungmsl.com/ms-ssd/

[15] L. Xiang, X. Zhao, J. Rao, S. Jiang, and H. Jiang, “Characterizing the
performance of intel optane persistent memory: A close look at its on-
dimm buffering,” in Proceedings of the 17th European Conference on
Computer Systems, 2022, pp. 488-505.

[16] J. Yi, B. Dong, M. Dong, R. Tong, and H. Chen, “Mt"2: Memory
bandwidth regulation on hybrid nvm/dram platforms,” in Proceedings of
the 20th USENIX Conference on File and Storage Technologies, 2022,
pp. 199-216.

[17] X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “Morlog: Morphable
hardware logging for atomic persistence in non-volatile main memory,”
in Proceedings of the ACM/IEEE 47th Annual International Symposium
on Computer Architecture, 2020, pp. 610-623.

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

Y. Xu, J. Izraelevitz, and S. Swanson, “Clobber-nvm: Log less, re-
execute more,” in Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 346-359.

R. Kateja, A. Pavlo, and G. R. Ganger, “Vilamb: Low overhead
asynchronous redundancy for direct access nvm,” in arXiv:2004.09619,
2020.

J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B.
Da Silva, S. Swanson, and A. Rudoff, “Nova-fortis: A fault-tolerant
non-volatile main memory file system,” in Proceedings of the 26th
Symposium on Operating Systems Principles, 2017, pp. 478-496.

R. Wu, Z. Shen, Z. Yang, and J. Shu, “Mitigating write disturbance in
non-volatile memory via coupling machine learning with out-of-place
updates,” in Proceedings of IEEE International Symposium on High-
Performance Computer Architecture, 2024, pp. 1184-1198.

Intel, “Intel optane persistent memory 100 se-
ries 512gb module product specifications,” 2019. [On-
line]. Available: https://ark.intel.com/content/www/us/en/ark/products/
190351/intel-optane-dc- persistent-memory-512gb-module.html

Y. Hu, L. Cheng, Q. Yao, P. P. C. Lee, W. Wang, and W. Chen, “Ex-
ploiting combined locality for wide-stripe erasure coding in distributed
storage,” in Proceedings of the 19th USENIX Conference on File and
Storage Technologies, 2021, pp. 233-248.

S. Kadekodi, S. Silas, D. Clausen, and A. Merchant, “Practical design
considerations for wide locally recoverable codes Ircs,” in Proceedings
of the 21st USENIX Conference on File and Storage Technologies, 2023,
pp. 1-16.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300-304, 1960.

R. M. Krishnan, D. Zhou, W.-H. Kim, S. Kannan, S. Kashyap, and
C. Min, “Tenet: Memory safe and fault tolerant persistent transactional
memory,” in Proceedings of the 21st USENIX Conference on File and
Storage Technologies, 2023, pp. 247-264.

L. Benson, H. Makait, and T. Rabl, “Viper: An efficient hybrid pmem-
dram key-value store,” in Proceedings of the VLDB Endowment, vol. 14,
2021, pp. 1544-1556.

P. J. Nair, C. Chou, B. Rajendran, and M. K. Qureshi, “Reducing read
latency of phase change memory via early read and turbo read,” in
IEEE 21st International Symposium on High Performance Computer
Architecture, 2015, pp. 309-319.

J. Wang, Y. Lu, Q. Wang, M. Xie, K. Huang, and J. Shu, “Pacman:
An efficient compaction approach for log-structured key-value store
on persistent memory,” in Proceedings of USENIX Annual Technical
Conference, 2022, pp. 773-788.

J. Yang, Y. Yue, and KV. Rashmi, “A large scale analysis of hundreds of
in-memory cache clusters at twitter,” in Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation, 2020, pp.
191-208.

Intel, “Intel intelligent storage acceleration library,” 2023. [Online].
Available: https://github.com/intel/isa-1

——, “Ipmctl user guide,” 2020. [Online]. Available: https://docs.
pmem.io/ipmctl-user-guide/

J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” in Proceedings of the 2l1st International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2016, pp. 427-442.

R. M. Krishnan, J. Kim, A. Mathew, X. Fu, A. Demeri, C. Min, and
S. Kannan, “Durable transactional memory can scale with timestone,”
in Proceedings of the 25th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020, pp.
335-349.

A. Abulila, I. E. Hajj, M. Jung, and N. S. Kim, “Asap: Architecture
support for asynchronous persistence,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 306-319.
D. H. Yoon and M. Erez, “Virtualized and flexible ecc for main memory,”
in Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2010, pp.
397-408.

S. Jeong, S. Kang, and J.-S. Yang, “Pair: Pin-aligned in-dram ecc
architecture using expandability of reed-solomon code,” in Proceedings
of the 57th ACM/IEEE Design Automation Conference, 2020, pp. 1-6.
R. Kateja, N. Beckmann, and G. R. Ganger, “Tvarak: Software-managed
hardware offload for redundancy in direct-access nvm storage,” in
Proceedings of the 47th ACM/IEEE Annual International Symposium
on Computer Architecture, 2020, pp. 624-637.

Guanglei Xu received the BE degree in computer
science from the Huazhong University of Science
and Technology (HUST), China, in 2020. He is
currently working toward the Ph.D degree majoring
in computer science at HUST. His current research
interests include persistent memory and data relia-
bility.

Yuchong Hu (Member, IEEE) received the BS
degree in computer science and technology from the
School of the Gifted Young, University of Science
and Technology of China, Anhui (USTC), China, in
2005, and the PhD degree in computer science and
technology from USTC, in 2010. He is currently a
professor with the School of Computer Science and
Technology, Huazhong University of Science and
Technology. His research interests include improving
data reliability (e.g., erasure coding) and Big Data
storage systems. He has published 12 papers as

the first/corresponding author in conferences FAST, INFOCOM, SoCC, and
journals ACM-TOS, IEEE JSAC. He also published more than 40 articles in
major journals and conferences, including IEEE TC, ATC, DSN.

(

Dan Feng (Fellow, IEEE) received the B.E., M.E.,
and Ph.D. degrees in computer science and tech-
nology from Huazhong University of Science and
Technology (HUST), Wuhan, China, in 1991, 1994,
and 1997, respectively. She is a Professor and the
Dean of the School of Computer Science and Tech-
nology, HUST. Her research interests include com-
puter architecture, Non-Volatile memory technology,
distributed file system, and massive storage system.
She has more than 200 publications in major journals
and international conferences, including IEEE TC,

IEEE TPDS, IEEE TCAD, ACM-TOS, FAST, USENIX ATC, ISCA, EuroSys,
HPDC, SC, DAC, et al. She has served as the reviewer of multiple journals,
including IEEE TC, IEEE TPDS, et al, and the program committees of
multiple international conferences, including FAST, SC, MSST, SRDS, et al.

Wenpeng He received the B.E. degree from North-
eastern University, Shenyang, China, in 2017. He
is currently a Ph.D student at Huazhong University
of Science and Technology, Wuhan, China. His
current research interests include trusted computing,
non-volatile memory, secure and reliable memory
system.

Junyuan Huang is a Ph.D. student advised by Prof.
Yuchong Hu at Huazhong University of Science and
Technology (HUST). He obtained the B.E. degree in
Computer Science from HUST in 2024. His current
research interests include memory disaggregation,
system reliability.

