Accelerating Erasure Coding on Persistent Memory via Adaptive
Prefetcher Scheduling

Guanglei Xu
Huazhong University of Science and
Technology
Wuhan, China
grayxu@hust.edu.cn

Dan Feng
Huazhong University of Science and
Technology
Wuhan, China
dfeng@hust.edu.cn

Abstract

Compared to DRAM, persistent memory (PM) offers higher density
and persistence but encounters more severe reliability challenges.
Erasure coding is widely adopted to enhance reliability with mini-
mal space overhead. Unfortunately, applying erasure coding to PM
introduces significant additional latency. Previous work to mitigate
coding latency has primarily focused on optimizing computational
efficiency. Instead, we reveal that the main performance bottleneck
is high memory latency due to inefficient hardware prefetchers,
rather than computation. We further observe that the prefetching
inefficiency mainly results from: (i) too wide or narrow coding
stripes, (ii) small block sizes, and (iii) high concurrency.

Based on these observations, we propose DIALGA, an adaptive
hardware/software prefetching scheduler aware of PM encoding
characteristics. D1ALGA improves memory access efficiency and
thereby enhances encoding performance. It first profiles the cache
status and access patterns to adaptively switch prefetching strate-
gies. D1aLGA then employs a lightweight operator to achieve fine-
grained and low-overhead scheduling for both hardware and soft-
ware prefetchers. Additionally, DiaLGA further optimizes the PM
read buffer efficiency by leveraging the implicit data loading mech-
anism for prefetching. Compared with state-of-the-art erasure cod-
ing libraries, D1aLGA achieves up to 96.6% higher encoding through-
put and up to 178.8% improvement in multi-thread scalability.

CCS Concepts

« Computer systems organization — Redundancy; Processors
and memory architectures; « Hardware — Non-volatile memory.

Keywords
Erasure Coding, Persistent Memory, Prefetching

ACM Reference Format:

Guanglei Xu, Hai Zhou, Yuchong Hu, Dan Feng, and Renzhi Xiao. 2025.
Accelerating Erasure Coding on Persistent Memory via Adaptive Prefetcher
Scheduling. In 54th International Conference on Parallel Processing (ICPP
'25), September 08—11, 2025, San Diego, CA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3754598.3754614

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPP °25, San Diego, CA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2074-1/25/09

https://doi.org/10.1145/3754598.3754614

Hai Zhou

Huazhong University of Science and
Technology
Wuhan, China
haizhou@hust.edu.cn

Yuchong Hu
Huazhong University of Science and
Technology
Wuhan, China
yuchonghu@hust.edu.cn

Renzhi Xiao

Huazhong University of Science and
Technology
Wuhan, China
renzhixiaohust@gmail.com

1 Introduction

Persistent memory (PM) is an emerging memory technology that
provides memory-like performance and disk-like capacity with
persistence [27, 30, 33]. System applications can access byte-
addressable PM by load/store instructions, reducing the develop-
ment effort required for migrating existing memory systems. Many
studies [20, 33] focus on optimizations for migrating from DRAM
to PM by targeting the unique characteristics of PM, such as high
memory access latency and memory traffic contention.

Although PM provides new opportunities for memory system
design, it has lower reliability compared to DRAM. In modern
production systems, memory errors have been extensively studied
and found to potentially cause serious problems. [15]. Errors in
PM can originate from various sources, such as hardware-level bit
flips, write disturbances, and system-level errors [26, 34]. These
errors are difficult to detect and correct using only device-level
redundancy.

To enhance the reliability of PM, erasure coding is used as sys-
tem redundancy to provide the capability to repair erroneous data
on PM [29, 34]. Reed-Solomon (RS) code [21] is a widely adopted
erasure code that encodes k data blocks to generate m redundant
parity blocks, forming a stripe. This enables the recovery of up to m
lost data blocks. Unfortunately, existing studies [13, 28] show that
the additional computation and load/store operations introduced
by using erasure coding on PM to maintain reliability redundancy
double the latency. Previous methods [18, 25, 35] have been pro-
posed to accelerate encoding on DRAM, including optimizing the
encoding matrix and reusing intermediate results to reduce compu-
tational overhead. But these methods focus primarily on improving
computational efficiency. On high latency PM, the performance
bottleneck may shift from computation to memory access.

Unlike prior work focusing on computation, we identify the pri-
mary performance bottleneck for erasure coding on PM as high
memory access latency due to inefficient hardware prefetchers. The
main process of encoding can be divided into multiple sets of mem-
ory load and computation operations. High-latency synchronous
memory loads on PM can stall subsequent computation instruc-
tions, degrading encoding performance. We further observe three
main causes of hardware prefetching inefficiency: (i) too wide or
narrow encoding stripes, which can overload or underutilize the
hardware prefetcher; (ii) small encoding block sizes, which lead to
inaccurate prefetches; (iii) high concurrency, which causes PM read

https://orcid.org/0009-0005-1415-1592
https://orcid.org/0000-0002-0869-3038
https://orcid.org/0000-0003-1265-7141
https://orcid.org/0000-0002-4674-6006
https://orcid.org/0000-0001-7005-5734
https://doi.org/10.1145/3754598.3754614
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3754598.3754614

ICPP °25, September 08-11, 2025, San Diego, CA, USA

IcPU T T T T T | | PM T T T T T
| [Register| [Cache | | |]Buffer| | PM Media | i
b4 ppp--toood--4=2/H-----
8-64B 64 B 256 B
Operand Cacheline XPLine
(1~20 ns) (~50 ns) (~300 ns)

Figure 1: Data load granularity across different layers.

buffer thrashing and read amplification. Because of the limited abil-
ity of the hardware prefetchers, they cannot prefetch data blocks on
PM timely and accurately to hide memory access latency in these
short prefetching windows or under high concurrency pressure.
What’s worse, useless prefetching from hardware prefetchers in-
creases memory traffic contention and can even lead to severe read
amplification due to PM read buffer thrashing.

However, enabling efficient and flexible prefetching for erasure
coding on PM remains challenging: (i) Inflexible pattern tracking.
Hardware prefetchers are fixed and struggle to adapt to the memory
access patterns of coding on PM, especially under varying coding
parameters and block sizes [12, 31]. (ii) Prefetch control overhead.
Hardware prefetchers lack lightweight and fine-grained control
mechanisms [7, 22]. Meanwhile, introducing software prefetching
may incur execution and branch misprediction overheads. (iii) In-
efficient buffer utilization. Excessive prefetching not only fails to
effectively utilize the PM read buffer to reduce latency, but even
leading to read amplification due to buffer thrashing.

To this end, we propose DIALGA, an adaptive hardware/software
prefetching scheduler that is aware of the characteristics of PM
encoding, to improve memory access efficiency, thereby enhancing
encoding performance. First, D1ALGA’s adaptive coordinator collects
memory access patterns and samples hardware events to assess the
status of CPU caches and hardware prefetchers, thus adaptively
switching between different prefetching strategies and thresholds.
Second, D1ALGA’s lightweight operator employs static shuffle map-
ping to achieve fine-grained control over hardware prefetchers, and
embeds branchless pipelined software prefetch instructions. Addi-
tionally, it further employs a PM read buffer-friendly prefetching
scheme to take advantage of implicit data loads. To the best of our
knowledge, D1ALGA is the first work to mitigate the memory access
bottleneck of erasure coding on PM.

In summary, this paper makes the following contributions:

e We analyze the behavior of hardware prefetchers during
encoding on PM and observe that the performance bottle-
neck is high memory access latency caused by inefficient
hardware prefetchers. (§3)

e We design Diarga, an adaptive hardware/software
prefetcher scheduler that is aware of the characteristics
of PM encoding. It utilizes both an adaptive coordinator
and a lightweight operator for low-overhead prefetcher
scheduling, while leveraging the PM read buffer, thus
enhancing memory access efficiency for PM encoding. (§4)

e We implement D1aLGA! within the widely-deployed accelera-
tion library, ISA-L [1]. Results show that D1ALGA significantly
improves encoding throughput and multi-thread scalability
compared to state-of-the-art libraries. (§5)

The source code is available at https://github.com/Dialga-ICPP25.

Guanglei Xu, Hai Zhou, Yuchong Hu, Dan Feng, and Renzhi Xiao

Lookup Table 8 E = (A7
Co ngf'r21atrl>2<3
XOR-based oD Weerer
EEEEEEEEEL JEREERR
itmatrix

Figure 2: Erasure coding process over a Galois Field.
2 Background

2.1 Persistent Memory

Persistent memory (PM) provides larger density than DRAM [27,
30]. Data-intensive memory systems can be migrated to PM with the
same load/store interface. The PM media (e.g. PCM) is slower than
DRAM, leading to higher read latency for PM. Many studies [30, 36]
aim to optimize systems by overcoming PM characteristics, includ-
ing 2x higher load latency and memory traffic contention. Although
the first commercially available PM device, Intel Optane DCPMM,
has been discontinued, industrial research in PM continues, such
as Samsung CXL-based CMM-H [24].

The CPU and PM operate at mismatched access granularities.
PM can be accessed via 64 B memory interfaces like DDR-T or
CXL, because PM devices integrate an on-chip buffer to bridge the
speed and access granularity gap between internal persistent media
and DRAM. Consequently, data loading granularity varies across
layers, as shown in Figure 1. Registers of different sizes process
operands at 8-64 B granularities. The CPU cache retrieves at a
64 B cacheline granularity, while the PM buffer accesses PM media
at a 256 B (XPLine) granularity. Granularity increases at lower
layers. We refer to the load amplification caused by this granularity
mismatch implicit data loads. For example, a single 8B read request
may trigger a larger 256B read from the underlying PM media[16].
Samsung CMM-H also exhibits similar characteristics due to its
internal DRAM and flash [24].

Recent research [26, 29, 34] indicates that the reliability of PM
is lower than that of DRAM. Uncorrectable memory errors may
lead to serious errors in production [15]. First, the PM media may
occur random errors, such as bit flips or write disturbances, some
of which are beyond the capabilities of on-chip ECC. Second, errors
from levels above hardware, like system kernel errors or software
scrubbing, can lead to incorrect write requests to PM media. Even
with ECC modules, existing PM products [11] only achieve a low,
disk-level Mean Time Between Failures (MTBF).

2.2 Erasure Coding

For fault-tolerant memory systems, erasure coding can enhance
system reliability with low space overhead [8]. Reed-Solomon
codes [21] are the most commonly used erasure codes. RS(k + m, k)
encodes k data blocks to generate m parity blocks, forming a stripe
of k + m blocks. This allows for decoding any k blocks to recover
from up to m erroneous data blocks. Due to additional computation
and load/store operations, erasure coding inevitably introduces
extra performance overhead.

Many studies focus on reducing the overhead of erasure coding.
The encoding computation in RS codes is performed in the Galois
Field (GF) of size 2", which is not natively supported by CPUs.
Figure 2 shows two different implementations of GF encoding. The
lookup table approach pre-computes the results of GF multiplica-
tion and retrieves them via table lookups. For example, ISA-L [1] isa

https://github.com/Dialga-ICPP25

Accelerating Erasure Coding on Persistent Memory via Adaptive Prefetcher Scheduling

(a) Encode Throughput (b) Norm. L3 Miss Cycles

10
2_
Q
fra)
) 1
0_
Cache DRAM PM Cache DRAM PM

I SA-L-NoPF EESIISA-L

Figure 3: Encoding performance of RS(12, 8) with different
load sources.

w5 == S e I S 1.00
g 4 : I e ——— 1 0 8%
i S
ot o :
3 > P I 4 b d \\ 06 b]
g2 Ptil ; 04t
R A\ 4%
e T e S B S : 02E
5 ! ! ! Nysee 025
Fo ‘ ‘ ‘ ‘ 0.02
4 8 12 16 20 24 28 32 36 40

the number of data blocks (k)
--#-- 1Ch Throughput 1Ch Useless PF Ratio -+ 1Ch PF Ratio
——6Ch Throughput 6Ch Useless PF Ratio —=—6Ch PF Ratio

Figure 5: The impact of different stripe sizes for encoding on
PM (m = 4), including encode throughput, useless prefetch
ratio, and L2 prefetch ratio.

Single Instruction Multiple Data (SIMD) accelerated library widely
used in both research and production systems [3, 8]. ISA-L only
needs to load each data block once during encoding. In contrast,
XOR-based approach converts GF multiplication into multiple XOR
computation groups. Encoding one parity block requires several
different groups of XOR operations. Researchers optimize the en-
coding bitmatrix to reduce memory accesses and computations [17].
Zerasure [35] systematically considers various factors impacting en-
coding performance and adopts heuristic optimization procedures
to integrate multiple optimization strategies. Cerasure [18] further
employs a greedy optimization approach for encoding bitmatrix
search and decomposes wide stripe encoding. However, XOR-based
approach requires repeatedly reading data blocks from different
locations, leading to a larger memory footprint.

Existing research [18, 35] on erasure coding acceleration mainly
focuses on computational efficiency, but memory access efficiency
constitutes a more prominent bottleneck for PM with higher la-
tency [27, 30]. Studies [13, 28, 29, 34] have shown that coding on PM
introduces significant extra overhead, exceeding 50 %. The overhead
stems from the computation and data updates required to maintain
parity redundancy upon writes or updates. This makes optimizing
the performance of erasure coding on PM an key problem.

3 Observations
3.1 Bottleneck Analysis

To investigate the performance bottlenecks related to high-latency
PM, we designed an encoding test and used Perf [6] to sample
PMU events for profiling. This benchmark encodes random 1 KB
stripes using ISA-L with RS(12, 8) to evaluate the impact of different
data load sources on encoding throughput and CPU L3 cache miss
cycles. The encoding throughput refers to the rate of processing
data blocks. We leverage AVX512 for load, store, and compute

ICPP °25, September 08-11, 2025, San Diego, CA, USA

n (a) AVX512 (b) AVX256

) [T 3

c) |

54 *

a

S 2 R T S o o g 21 g

§’ et BE o daln "_'__,_,__.__;-v—-v-—v—a--w o
£0 00—

Fo1 2 3 1 2 3

Frequency (GHz)
——PM-NoPF

Frequency (GHz)
PM --+- DRAM-NoOPF DRAM

Figure 4: Encoding performance of RS(12, 8) with different
CPU frequencies.

operations, where all writes to PM are non-temporal and a final
memory fence is applied. Hardware configuration is shown in §5.1.

#Observation 1. Memory access efficiency is key for PM. Fig-
ure 3 shows that sourcing encoding data from DRAM achieves 195—
272% higher throughput compared to sourcing from high-latency
PM. With the hardware prefetcher disabled, the change in through-
put corresponds proportionally to the change in L3 cache miss
cycles. With the hardware prefetcher enabled, the reduction in L3
cache miss cycles is greater for DRAM than for PM, resulting in a
109% throughput increase for DRAM, compared to a modest 50% in-
crease for PM. This result illustrates: (i) memory access efficiency is
the key performance bottleneck, rather than computation. (ii) while
the hardware prefetcher can effectively enhance DRAM encoding
performance, its efficiency on PM is smaller.

#Observation 2. Computation efficiency is relatively less
important for PM. Figure 4 shows the encoding performance with
different CPU frequencies. On PM, we observed minimal additional
performance gains beyond 2 GHz, whereas modern server CPU
frequency can exceed 3 GHz. It indicates that this portion of CPU cy-
cles is wasted for waiting memory loading. Conversely, DRAM with
lower latency maintains a more consistent throughput improve-
ment curve, better utilizing CPU cycles for encoding computations.
This observed trend is more pronounced under half-width AVX256.
Existing XOR-based erasure coding strategies [18, 35] introduce
repeated load/store to the same memory address. This access
pattern increases latency and amplify memory traffic. Therefore,
we focus our analysis on ISA-L, which has a simpler memory access
pattern. These XOR-based methods will be compared in §5.

3.2 Hardware Prefetcher Analysis

We further examine hardware prefetcher behavior during encoding
across different scenarios, including varying encoding parameters.
Unless otherwise specified, the default configuration uses a 4 KB
block size with hardware prefetchers enabled and AVX512.
#Observation 3. The number of data blocks influences the
prefetching window and affects efficiency, while excessive
numbers will disable hardware prefetchers. The number of
data blocks per stripe differs across erasure coding systems, with
Facebook’s f4 using 12 and VAST [8] using 154. Figure 5 shows the
changes in encoding throughput, useless hardware prefetch ratio
(PMU 0xf2), and total L2 prefetch ratio as k increases. We divide
the results into three stages: (i) k < 16: The throughput initially
starts low but increases as k grows. A smaller k reduces the prefetch
window, making effective prefetching more challenging. During
this stage, the hardware prefetcher is less efficient, leading to higher
traffic. (ii) 16 < k < 32: The throughput moderately increases, with

ICPP °25, September 08-11, 2025, San Diego, CA, USA Guanglei Xu, Hai Zhou, Yuchong Hu, Dan Feng, and Renzhi Xiao

(a) Encode Throughput 15 (b) Read Amplification

(a) 1 KB (b) 2 KB (c) 4 KB

Jury
[6,]

201
157
101

151

1.0

Jury
o

Throughput (GB/s)

0.5 54
0.0 1% o o A R S S
. 256512 1K 2K 3K 4K 5K 6 14 8 12 16 14 8 12 16 14 8 12 16
block size (B) block size (B) thread thread thread
B ISA-L-NoPF =IN ISA-L —e— ISA-L-NoPF ISA-L

Figure 6: RS(28, 24) encoding throughput and read amplifica- Figure 7: Multi-thread scalability of RS(28, 24) encoding on
tion on PM with different block sizes. PM.

a gradual reduction in useless hardware prefetch count. During this
stage, the hardware prefetcher operates more efficiently because of
a larger prefetch window, although some useless prefetches remain.
(iii) k > 32: The throughput is extremely low, because the number of
data blocks surpasses the L2 stream prefetcher’s tracking capability.
While Intel [5] only states a tracking capability of 16 bidirectional
streams, we show that the prefetcher can track up to 32 unidirec-
tional streams. We believe exceeding this threshold overwhelms
this stream prefetcher, reducing its prefetching confidence. Conse-
quently, its aggressive prefetching activity for 4 KB pages drops to
near zero, leading to a sharp throughput decline. Similar behavior
is also observed across different Intel CPU generations. We find
that beginning with the Intel 3rd Gen Xeon Scalable, the stream
prefetcher can track up to 64 unidirectional streams. However, this
capacity remains insufficient for wide stripe encoding [8].

#Observation 4. Small encoding block sizes lead to inaccu-
rate hardware prefetching. The object sizes can vary, ranging
from several hundred bytes to a few KBs [31]. Figure 6 shows the en-
coding throughput and media read traffic amplification for different
block sizes, tested with RS(28, 24) as a hardware prefetcher friendly
stripe size. Hardware prefetcher significantly improves encoding
throughput for block sizes larger than 1 KB, but it has no effect
on smaller blocks. The shorter stream lengths for each block im-
pede effective hardware prefetching. This reduces the prefetcher’s
confidence and eventually stops prefetching, which also explains
the absence of read amplification for small blocks. When the block
size is between 1-3 KB, the hardware prefetcher improves perfor-
mance but leads to 23-37% read amplification due to its aggressive
prefetching. Since the hardware prefetcher does not prefetch across
4 KB pages, 4 KB blocks incur no read amplification and thus rep-
resent the most effective block size. When the block size exceeds
4 KB or is not 4 KB aligned, mixed patterns emerge, like moderate
acceleration and read amplification on 5 KB.

#Observation 5. Hardware prefetching under high con-
currency causes PM read buffer thrashing, leading to read
amplification and limited scalability. We further explore the
multi-thread scalability of RS(28, 24) encoding on PM. Figure 7
shows that throughput plateaus, and may even decrease, when the
number of threads reaches 8 to 10. In contrast, disabling the hard-
ware prefetcher results in linear scalability, although throughput
decreases due to the loss of latency hiding provided by prefetching.
We found that the rapid bottleneck in multi-threading is caused by
the aggressive prefetch behavior of uncontrolled hardware prefetch-
ers. Each prefetch retrieves a 64 B cacheline to the CPU cache.
Correspondingly, on the PM device, a 256 B XPLine containing

this cacheline is fetched to its on-chip read buffer to accelerate
subsequent accesses. However, under high concurrency, the data
prefetched to the read buffer is more likely to be evicted by other
prefetch requests before being accessed. This results in significant
PM media read bandwidth being wasted on transfers from PM
media to the read buffer. Such PM read buffer thrashing not only
prevents the read buffer from hiding load latency, but also amplifies
PM media read traffic and limits multi-thread scalability.

3.3 Challenges

Our observations indicate that inefficient hardware prefetching
is the primary performance bottleneck for erasure coding on PM,
causing high memory access latency, especially with wide stripes,
small blocks, and high concurrency. It is non-trivial to improve
prefetching efficiency due to the following challenges: (i) Inflexible
pattern tracking. Encoding parameters, access patterns in produc-
tion are varying [12, 31], which makes it challenging for fixed hard-
ware prefetcher strategies to track the access patterns of coding
on PM. (ii) Prefetch control overhead. Hardware prefetchers func-
tion as black boxes, lacking lightweight and fine-grained control
interfaces [7, 22]. Meanwhile, introducing software prefetching
incurs additional overhead and potential branch misprediction. (iii)
Inefficient buffer utilization. Despite the on-chip PM read buffer, un-
ordered or excessive prefetch requests fail to utilize it effectively and
may even cause severe read amplification due to buffer thrashing.

4 Design

We propose DIALGA to accelerate erasure coding on PM by adap-
tively scheduling hardware/software prefetchers, which coordi-
nates prefetching based on cache events and I/O patterns, executes
strategies via a lightweight operator, and leverages a PM read buffer-
friendly scheme. Figure 8 shows the architecture of DiaLGA.

4.1 Adaptive Coordinator

4.1.1 Challenge. Production systems have different characteristics
of coding tasks [12, 31]. For example, a system may need to encode
data with different parameters based on different fault tolerance
requirements. In addition, system pressure may fluctuate with con-
currency. Prefetcher scheduling strategies need to comprehensively
evaluate factors to enable adaptive adjustments for coding on PM.

4.1.2 Design. D1ALGA builds a coordinator to identify patterns of
different coding tasks to design and dispatch prefetcher schedul-
ing strategies to improve memory access efficiency. First, to iden-
tify cache pressure status, D1aLGA utilizes a lightweight sampling

Accelerating Erasure Coding on Persistent Memory via Adaptive Prefetcher Scheduling

|| Encode Requests |
3

[ISA-L Interface |-
¥ access pattern

DIALGA | s.1 Adaptive |}
Coordinator EW avents
e ATESE-~.., o
81.2 Lightweight 84.3 Buffer- i
Operator Friendly Prefetch %
switchi HiSpatgh_‘ iguide g
L {HwW PrefetcheEW Prefetcher |—
prefetch prefetch
A 4
- | Read:Buffer |
< | PM Media |

— load request path ----- » control path
Figure 8: Overview of the DiaLGaA architecture. Purple boxes
denote D1aLGA components, blue boxes denote hardware
components. Solid arrows indicate load request paths, dashed
arrows indicate control paths.

method to read hardware counters, including PEBS and PMU, for
collecting memory and cache events. Second, D1ALGA collects ac-
cess requests via the ISA-L library interface to identify and track
application-level access patterns. Finally, based on the collected
data, D1aLGA dynamically adjusts the scheduling policy for hard-
ware and software prefetchers.

Cache Events. DiaLgA’s coordinator samples memory access
latency via PMU hardware counters, using 110% of the average
latency under low pressure as a threshold to determine if read traf-
fic contention occurs. The threshold setting referenced previous
work [33]. Since useless prefetching by the hardware prefetcher ex-
acerbates read traffic contention, we also collect the number of use-
less L2 hardware prefetches. We quantify the hardware prefetcher
efficiency by calculating the difference in the number of useless
prefetches. A threshold of 150% is set to determine if the current
hardware prefetcher is operating inefficiently. If significant traffic
contention and inefficient hardware prefetcher are both detected
(e.g., under high concurrency pressure), Di1aLGA disables the hard-
ware prefetcher to alleviate contention. The counter sampling fre-
quency is set to 1 kHz to maintain low overhead [32].

I/0 Access Pattern. DIALGA’s coordinator collects stripe size,
block size and the number of concurrent threads via the ISA-L li-
brary interface as metrics of the I/O access pattern. When encoding
blocks larger than 4 KB, DiaLGa keeps the hardware prefetcher
enabled for the 4 KB aligned portions. For non-4 KB aligned por-
tions or small blocks, DiIALGA determines whether to enable the
hardware prefetcher based on cache events. For wide-stripe coding,
there is no need to manage hardware prefetchers, because their
hardware limitations prevent them from tracking too many streams,
causing them to quickly lose confidence in prefetching and shut
down automatically. The threshold for the number of concurrent
threads in D1ALGA is set to 12 based on the observations. When
the number of concurrent threads exceeds a threshold, D1aLGA at-
tempts to disable the hardware prefetcher to prevent contention
and buffer thrashing caused by excessive prefetching. Although
hardware prefetchers perform inefficiently with narrow stripe and

ICPP °25, September 08-11, 2025, San Diego, CA, USA

small blocks, they are not directly disabled because the amplified
traffic under low pressure does not degrade performance.

Pipelined software prefetch. To address the limitations of
hardware prefetcher strategies, DIALGA’s coordinator further em-
ploys a pipelined software prefetcher. D1aLGA inserts asynchronous
software prefetch instructions during ISA-L encoding tasks to hide
memory access latency and improve encoding performance. By
adaptively determining an appropriate prefetch distance d, the
pipelined software prefetcher prefetches the N + d-th cacheline
while accessing the N-th cacheline. The trade-off in selecting the
prefetch distance is that a shorter distance may prevent data from
being loaded into the cache before the associated load, whereas
a longer distance may increase CPU cache and PM buffer usage,
leading to the prefetched data being evicted before it is needed.
Regardless of whether hardware prefetching is enabled, DiALGA at-
tempts software prefetching, which can trade increased read traffic
for improved performance under low pressure.

DiaLca employs hill climbing [23] to determine the software
prefetch distance d. It initiates this search upon startup or when
the encoding performance fluctuates by more than 10%. The search
begins by setting d = k. To reduce search time, DIALGA uses the la-
tency of 128B sub-tasks as the optimization target, as the benefits of
longer prefetch distances may manifest in the subsequent cacheline
row within the stripe. It then iteratively explores a neighborhood
of size 16 around the current distance to find a local optimum.

In conclusion, D1aLGA employs a threshold-based heuristic to
switch the hardware prefetcher and hill climbing to select the soft-
ware prefetch distance. Instead of dynamic instrumentation, Dialga
statically extends ISA-L’s existing ec_encode_data(len, k, m,
gf_table, data, parity) assembly entry points (originally for
different instruction sets). The coordinator selects a corresponding
entry point according to the policy, where each entry point corre-
sponds to a distinct strategy, while the prefetch distance is adjusted
via parameters. Given that accessing PM is the primary bottleneck,
the I-cache impact of larger static code is acceptable.

Other Coding Tasks. D1ALGA is also applicable for other era-
sure coding tasks, including decoding and Locally Repairable Code
(LRC) [10]. In ISA-L, encoding and decoding tasks share the same
memory load pattern: reading k data blocks, while decoding reads k
correct blocks. A (k, m,) LRC code builds on RS codes by dividing
data blocks into [groups and adding a local XOR parity to each
group. LRC encoding still requires reading k data blocks. As a re-
sult, the bottleneck also stems from slow memory loads. Therefore,
DiaLca’s adaptive prefetching can also be applied to improve their
performance. We discuss the generality for other PM devices in §6.

4.2 lightweight Operator

4.2.1 Challenge. While D1ALGA’s coordinator optimizes prefetcher
scheduling strategies, mitigating the scheduling overhead remains
challenging: (i) Hardware prefetchers lack mechanisms for fine-
grained and lightweight switching. Prior approaches only per-
mit switching at the machine level via BIOS [27] or at the core
level using msr-tools which requires privileged kernel mode with
mode switch overhead [5]. (ii) Implementing schedulable software
prefetching interfaces within compact assembly libraries may intro-
duce additional overhead, such as branch misprediction penalties.

ICPP °25, September 08-11, 2025, San Diego, CA, USA

prefetch
data ptr data ptr ¥ prefetch ptr

Dz | Dy | Du “:N Du Dz | Dy [D | D2z | Dz | Da2 | Dis |

Du

for-loop:
D11 D21 D31 D41 6 4
DlZ DZZ D32 D42

load and prefetch

64B_load zmm0, [ptr]

mov ptr, [ptr+k]
data blocks

Figure 9: An example of plpelmed software prefetching in

DiaLGa when k = 4 and the prefetch distance d = 5.

prefetch [ptr]
" encoding

4.2.2 Fine-Grained Hardware Prefetcher. DIALGA implements a
lightweight, fine-grained hardware prefetcher switch interface, en-
abling low-overhead, function-level switching of hardware prefetch-
ers. Inspired by studies on reverse engineering of CPU hardware
prefetchers [7, 22], we observed that hardware prefetchers are trig-
gered by specific access patterns. We find that the majority of
hardware prefetch requests stem from the L2 stream hardware
prefetcher, which is activated by detecting patterns such as se-
quential memory accesses or accesses crossing 4 KB boundaries.
Each accurate prefetch increases the confidence of the L2 stream
hardware prefetcher, thus enhancing its aggressiveness. Therefore,
DiarGa fools the L2 stream prefetcher by shuffling consecutive
memory access instructions, which reduces prefetch confidence
and decreases the number of hardware prefetches. We carefully
designed a static shuffle mapping to reorder encoding tasks at the
64 B cacheline granularity, thereby avoiding identified patterns.
Conversely, deactivating this shuffle mapping re-enables the hard-
ware prefetcher by rebuilding its confidence. In evaluation, applying
vectorized offsets to data pointers incurred only marginal overhead.

4.2.3 Branchless Pipelined Software Prefetcher. DiALGa efficiently
embeds a low-overhead, branchless software prefetching interface
within compact assembly functions by reorganizing task point-
ers with vectorization. To mitigate overheads introduced by the
software prefetcher scheduling interface, such as potential branch
mispredictions and increased register usage, D1ALGA performs ex-
ternal, vectorized pre-processing in advance. As shown in Figure 9,
this pre-process creates a prefetch pointer array of length k along-
side the data pointers used for encoding tasks. When accessing data
for encoding, the address to be prefetched can be derived by apply-
ing the fixed offset k to the data pointer. If the prefetch distance d
is not a multiple of k, the vectorized construction is performed in
two groups with different offsets to ensure the correctness of the
prefetch pointer. By constructing prefetch pointers with specified
distances through external vectorization, additional logic branches
and register usage are avoided. To prevent extra read traffic, we re-
vert to the standard encoding interface for tail-end tasks. Moreover,
externally constructed prefetch pointers retain their order even
after shuffling, ensuring compatibility with fine-grained hardware
prefetcher switching strategies.

4.3 PM Read Buffer-Friendly Prefetch

4.3.1 Challenge. Unordered or excessive prefetching fails to ef-
fectively utilize the PM read buffer for latency reduction and may
cause read buffer thrashing under high concurrency, leading to
severe read amplification and limited scalability.

4.3.2 PM Read Buffer Implicit Loads. The on-chip read buffer of PM
exhibits implicit loads due to the granularity mismatch. Specifically,
a 64 B data loading will implicitly load the associated 256 B (XPLine

Guanglei Xu, Hai Zhou, Yuchong Hu, Dan Feng, and Renzhi Xiao

size) into the read buffer. This results in varying latency for loads
depending on whether they hit the read buffer. If the access interval
between different 64 B cachelines within an XPLine is greater than
the implicit load time, only the latency of the first load reflects the
true PM media latency, while the others reflect the buffer latency.

DiaLca further specifies distinct prefetch distances based on dif-
ferent memory load latencies. The prefetch distance should align the
load latency to achieve a trade-off between cache footprint and time-
liness. Therefore, non-uniform load latency reduces the efficiency of
uniform prefetch distance. Although the hardware prefetch distance
cannot be modified, we can further optimize pipelined software
prefetching. Instead of uniformly applying the same prefetch dis-
tance to all cachelines, we increase the prefetch distance for the first
cacheline in each accessed XPLine while reducing distance for the
remaining cachelines. But this strategy is applied only under low
pressure because the increased number of simultaneously accessed
XPLines leads to higher PM read buffer usage. The initial prefetch
distance for the first cacheline of each XPLine is set to k + 4, and is
then adjusted by the adaptive coordinator.

4.3.3 Reduce Read Amplification. The primary reason why exces-
sive hardware prefetching leads to read buffer thrashing and am-
plification is the mismatch between the size of the read buffer and
the working set size at high concurrency. Data loaded into the read
buffer is prematurely evicted due to capacity without being utilized,
resulting in wasted PM media bandwidth. Thus, to improve the
efficiency of the on-chip read buffer under high pressure, we should
limit the memory access ranges, including prefetching.

To this end, D1ALGA expands the granularity of a single assem-
bly encoding loop task to access the associated data in the XPLine
earlier. The task granularity in the assembly loop is extended to
XPLine by reusing existing general-purpose and AVX512 registers.
This expansion ensures that each iteration achieves a 256 B read and
compute granularity, increasing the likelihood that data implicitly
prefetched to the PM read buffer is loaded rather than prematurely
evicted. Note that increasing the granularity of a single loop pro-
cess does not adversely affect cache efficiency. In ISA-L’s memory
access pattern, each data is read once for computation without rep-
etition. However, expanding granularity reduces baseline encoding
performance. This decline occurs due to decreased efficiency in the
implicit prefetching of the PM on-chip read buffer. After each 64 B
load, the read buffer loads its associated 256 B XPline. Processing
larger granularity increases read latency. Therefore, we adopt this
strategy only under high pressure. Because the PM read buffer size
is fixed, we can estimate the utilization rate of the read buffer based
on the configurations, ensuring the max prefetch distance satisfies:

max(distance)
k+m

where m = 0 for non-temporal stores. For example, on our 6 channel
system with a total 96 KB read buffer, thrashing occurs when the
number of threads exceeds 12 under hardware prefetching enabled.

nthread X k x 256B X { } < buffersize, (1)

5 Evaluation
5.1 Methodology

Hardware Configurations. Our evaluation testbed is a Linux
4.15.0 server with Intel Xeon Gold 6240 @ 3.30 GHz with 18 cores.

Accelerating Erasure Coding on Persistent Memory via Adaptive Prefetcher Scheduling

ICPP °25, September 08-11, 2025, San Diego, CA, USA

G4 (a) narrow stripes @, (b) wide stripes
o [a0)
23 23
))
< <
g‘ 1 1 g’ 1 4
I e
< 0 < 0
= = 32 40
B Zerasure [Cerasure Bl |SA-L-NoPF X3 ISA-L EEN [ISA-L-D @ Dialga
Figure 10: Encoding throughput on with different numbers of data blocks.
@ (a) k=8 (b) k=24 (c) k=48
o
e
52 2
Q
<
()]
>
o
<0 0
= 2 4 6 2 4 6
m m
Il Zerasure [Cerasure Il |SA-L-NoPF X3 ISA-L EEE ISA-L-D @ Dialga

Figure 11: Encoding throughput with different numbers of parity blocks.

Gold 6240 has a 32 KB L1 data cache, a 1 MB L2 cache, and the
LLC is 24.75 MB. Each CPU is equipped with 6 memory channels,
each having 16 GB of DDR4 2666 MHz DRAM and 128 GB of Intel
Optane DCPMM 100 series.

Compared systems. We select three state-of-the-art libraries as
our baselines: (1) Zerasure [35] is an XOR-based encoding library
that accelerates encoding through optimized algorithms combined
with various techniques, such as bitmatrix normalization and sched-
uling optimization. (2) Cerasure [18] further designs XOR encoding
matrices with fewer computations and optimizes cache efficiency
during the encoding process. We report Cerasure’s best perfor-
mance, as its decomposing did not consistently improve PM coding
performance in our tests. Note that Zerasure and Cerasure only
support AVX256. (3) ISA-L [1] is a widely deployed erasure coding
library, configured here with non-temporal stores. ISA-L-D en-
hances ISA-L via decomposing (using the same size as Cerasure) to
improve wide stripe encoding. D1aLGA is built upon ISA-L, which
internally uses multiple, automatically switched variant assembly
entry points within the standard ISA-L encoding interface.

Methodology. Following the methodology of prior work on era-
sure coding acceleration [18, 25, 35], we focus on encoding through-
put as the key performance metric. We analyze throughput across
different coding parameters, workloads and hardware configura-
tions. For the experiments, we measure the performance of RS(k, m)
random encoding in GF(2%) on 1 GB of pre-filled data, averaging re-
sults across 10 runs. Unless otherwise specified, the default settings
use m = 4 parity blocks and a 1 KB block size.

5.2 Encode Throughput Analysis

5.2.1 Impact of the number of data blocks. Figure 10 presents the
encoding throughput of 1 KB blocks across various stripe sizes. For
encoding with narrow stripes (k < 20) with 1 KB blocks, Zerasure
exhibits the lowest performance due to its suboptimal encoding
matrix. Cerasure shows improvement as k increases, but achieves
lower throughput than ISA-L due to additional load/store op-
erations and lower memory access efficiency. In contrast, DiALGA

employs pipelined software prefetching together with enabled hard-
ware prefetchers to effectively mitigate memory access latency,
even with a short prefetch window. D1ALGA achieves a 53.9-102.0%
throughput improvement compared to the best of other strategies.

For wide stripe encoding (k > 32) with 1 KB blocks, Zerasure’s
encoding matrix search space is too large for its search algorithm
to converge, resulting in some missing results. Meanwhile, ISA-L’s
performance declines sharply due to the limitations of the hard-
ware prefetcher. The decompose strategy in Cerasure mitigates this
by splitting the encoding into narrower stripes, reactivating the
hardware prefetcher. But compared to ISA-L without prefetching,
Cerasure only achieves a 48.9-53.2% improvement. ISA-L-D, em-
ploying the same decomposing strategy, achieved an 81.9-98.0%
improvement, suggesting that a simpler memory access pattern
yielded superior results. DIALGA, even without decomposing, at-
tained a 193.6-198.9% improvement through independent software
prefetching strategy. At the threshold k = 32, as the hardware
prefetcher reaches its peak efficiency, D1ALGA achieves only a 22.1%
performance improvement over ISA-L.

5.2.2 Impact of the number of parity blocks. Figure 11 shows the
impact of different numbers of parity blocks. When m = 2, the
performance of Cerasure is close to ISA-L. As m increases, the com-
plexity of the encoding increases. Unlike ISA-L, which relies on
table lookups for computation, XOR-based libraries such as Cera-
sure exhibit computational complexity that grows both faster and
non-linearly with increasing m. As a result, Cerasure experiences
more pronounced performance degradation as m increases. On nar-
row stripes, all methods except D1ALGA exhibit limited performance
regardless of the value of m, due to low hardware prefetching ef-
ficiency. D1aLGA outperforms other methods significantly under
different parameters, achieving improvements of 20.1-96.6% over
the best alternative strategies.

For wide stripes such as RS(52, 48), DIALGA maintains a per-
formance advantage with minimal degradation as m varies. This
stability arises because a larger k on wide stripes increases the pro-
portion of load operations, concentrating the bottleneck on memory

ICPP °25, September 08-11, 2025, San Diego, CA, USA

Guanglei Xu, Hai Zhou, Yuchong Hu, Dan Feng, and Renzhi Xiao

@, (a) RS(12, 8) 0 (b) RS(28, 24)
m ‘ m
: ! -
Bofg o R N - | 2
g =0 S - VS s e s
°]) °
gl MK K K FHK B 2,
= 256 512 1K 4 K 5K = 256 512 1K 4 K 5K
block size (B) block size (B)
BB Zerasure [Cerasure Il [SA-L-NoPF =0 ISA-L @ Dialga
Figure 12: Encoding throughput with different block sizes.
Q 1 KB 4 KB 1 KB 4 KB 0 - ,(@) AVX512 (b) AVX256
) I a4 24 4
o 20 20 % 55
= 3 5
210 101 Y 52 32
=) s S <
=] o [S>1
g o Fo R R £ 0 0
< U — . — = 101 U — S, S, S,
= 5 10 15 5 10 15 5 10 15 5 10 15 25, "Rg, "SlS3, F ke, Rs Rs, R
thread thread thread thread / K 54 224, (28,34) 224, (20,34)
RS(28, 24) RS(28, 24) RS(52, 48) RS(52, 48) B Zerasure[STISA-L _ESIDialga

—e—|SA-L-NoPF ISA-L —4—ISA-L-D ——Dialga

Figure 13: Multi-thread scalability of encoding throughput.

load, which D1aLGA’s effective software prefetching mitigates by
improving memory access efficiency. In contrast, after applying the
decompose strategy, both Cerasure and ISA-L-D face the problem
of reduced memory access efficiency due to smaller stripes after
decomposing, while also introducing amplified write traffic.

5.2.3 Impact of block size. Figure 12 shows the encoding through-
put for different encoding block sizes. For small block sizes of 256 B
and 512 B, where the hardware prefetcher has low confidence, en-
abling the hardware prefetcher yields no improvement for ISA-L.
Zerasure and Cerasure suffer from exacerbated memory access in-
efficiency due to excessively small packet sizes. For 1 KB blocks,
hardware prefetching improves ISA-L’s performance by 33-112%.
RS(28, 24) benefits from a longer prefetch window, leading to better
performance. DIALGA achieves significant performance improve-
ments for block sizes of 1 KB and smaller, outperforming the best
alternative strategy by 63.82-180.5%. However, at 4 KB, the im-
provement from D1ALGA is limited because the hardware prefetcher
operates at peak efficiency. It aggressively prefetches all cachelines
within each 4 KB blocks but does not prefetch across 4 KB bound-
aries, avoiding unnecessary bandwidth consumption. Similarly, at
5 KB, the improvement is limited to only 8.2-25.6% because 4 KB
blocks still dominate the workload.

5.3 Multi-Thread Scalability Analysis

Figure 13 shows the multi-thread encoding scalability of DiaLca
for different stripe sizes and block sizes. For RS(28, 24) 1 KB block
encoding, unlike ISA-L which rapidly bottlenecks at 8 threads, D1-
ALGA scales faster and bottlenecks later, achieving 50.0% higher peak
performance. But for 4 KB blocks, D1aLGA shows only marginal
performance improvements, due to efficient hardware prefetching
at 4 KB. This suggests that D1aLGA’s performance improvements
stem from the hardware prefetcher’s inefficiency. Only after ISA-L
degrades due to excessive concurrency does DIALGA demonstrate
up to a 21.0% improvement because of the stable performance main-
tained by adaptive coordination.

C—CerasureEEHISA-L-D [JCerasure IEHISA-L BEIDialga

Figure 14: Decoding through- Figure 15: Encoding through-
put with different stripe put with different SIMD in-

sizes. structions.

For RS(52, 48) wide stripe encoding, D1ALGA shows significant im-
provements, achieving up to 182.8% better performance compared
to ISA-L and up to 140.3% compared to the decompose strategy.
This improvement arises because ISA-L faces limitations caused
by the automatic disabling of the hardware prefetcher, whereas
the decompose strategy is constrained by narrow stripes encoding
and increased additional write traffic. Under wide stripes, perfor-
mance degradation appears after 10 threads, even with the hard-
ware prefetcher disabled. This is due to the 96 KB PM read buffer,
which can sustain at most 8 X 48 access streams (load + prefetch).
Consequently, when the number of thread exceeds 8, read buffer
thrashing ensues, leading to performance degradation. Although
DiaLrga alleviates this issue by increasing the prefetch distance, it
still reduces memory load efficiency.

5.4 Decode Throughput Analysis

Figure 14 presents the decoding throughput with different stripe
sizes. The performance of XOR-based methods degrades signifi-
cantly. This occurs because XOR-based methods are optimized for
encoding matrix, while the complexity of the corresponding de-
coding matrix remains unconstrained. This is because XOR-based
methods can only optimize the complexity of the encoding ma-
trix. But decoding matrix is directly derived from the encoding
matrix through a transformation and cannot be further optimized
for complexity. Therefore, in contrast to the performance degra-
dation observed with Zerasure and Cerasure, lookup table-based
methods such as ISA-L and D1ALGA maintain stable performance
and thus show a more pronounced advantage. DIALGA achieves
decoding throughput that is 142.1-340.7% higher than Cerasure,
and 76.1-88.1% higher than ISA-L.

5.5 SIMD Instruction Analysis

Figure 15 presents encoding performance with two different SIMD
instruction sets, AVX256 and AVX512. The operational width of

Accelerating Erasure Coding on Persistent Memory via Adaptive Prefetcher Scheduling

Q

o

e

5 2]

2

g

o0

= LR LR LR, LR LR LR

= C16,2,5) "C(6,2 3, 0(2422 C(2423 C(4322) C(4823)

[Cerasure XN ISA-L B Dialga

Figure 16: LRC encoding throughput with different parame-
ters.

n 1.0 w4

% o

2 0.8 03

2 0.6 § 2 N

s 0.4 51 g \

£0.2 £ o LIN

5 AN = RS(12,8) RS(28,24)

Z 77 RS(12,8) RS(28,24)RS(52,48)
[XEDISA-L BEEISA-L-D EmDialga

[=XAVanilla @A +SW+HW
N +SW EEN+SW+HW+BF

Figure 17: Cache miss cycles of Figure 18: Breakdown of
different stripe sizes. 1 KB encoding throughput.

AVX256 is half that of AVX512, which significantly reduces CPU
computational efficiency. Although a smaller width affects memory
access efficiency to some extent, the memory access bottleneck
remains primarily tied to memory latency. After transitioning the
instruction set to AVX256, varying degrees of performance degrada-
tion were observed. The baseline, ISA-L, exhibited only a moderate
decline of 12.3-23.6%, as it is significantly memory latency-bound.
Correspondingly, DiaLGa showed a greater deterioration of 24.9-
31.1%. However, it still outperformed Cerasure and ISA-L with an
improvement of 37.5-104.4%.

5.6 LRC Encode Throughput Analysis

Figure 16 shows LRC(k, m, [) encoding throughput with different
parameters for 1 KB blocks. Because LRC codes require additional
computation and store operations for extra local XOR parity blocks,
all strategies experience varying degrees of throughput reduction
compared to RS codes. Compared to the best results of other strate-
gies, D1aLGA improves throughput by 24.3-32.7% with non-wide
stripes, and by 35.2-37.8% with wide stripes. The higher propor-
tion of store instructions in LRC codes results in less significant
performance improvement for DIALGA.

5.7 Cache Efficiency Analysis

Figure 17 presents the CPU cache miss cycles during encoding, nor-
malized by the total number of loads. For RS(12, 8), ISA-L demon-
strates approximately double the miss cycles compared to D1ALGA,
consistent with the nearly 2x throughput improvement observed
in prior experiments. This consistency supports our observation of
the memory access bottleneck and indicates that DIALGA’s primary
performance advantage arises from enhanced memory access ef-
ficiency, effectively reducing CPU stall cycles. For RS(28, 24), the
hardware prefetcher exhibits relatively high efficiency, thereby lim-
iting the reduction in cycles achieved by DiaLca. For RS(52, 48),
compared to the decomposition strategy, D1ALGA not only employs
a more effective prefetching strategy but also eliminates the need
for parity reloading, thereby achieving a greater reduction in cache
miss cycles, amounting to 35.3%.

ICPP °25, September 08-11, 2025, San Diego, CA, USA

(a) Low Pressure (1T) (b) High Pressure (18T)

c
g8 2 =N
o®?2
)
F 1]
g2t
Ci<o_

cache controller media
EEX Dialga

Figure 19: Read traffic on different layers of RS(28, 24) 1 KB
encoding under various pressure conditions.

cache controller media
X ISA-L

5.8 Breakdown Analysis

Figure 18 breaks down the performance of different DiaLGA variants
to assess the contribution of individual optimizations. We exam-
ine four variants: Vanilla, which disables all optimizations and
serves as a baseline; +SW, which adds pipelined software prefetch-
ing; +HW, which enables hardware prefetching; and +BF, which intro-
duces buffer-friendly prefetching. Pipelined software prefetching
improves performance by 29.4-48.6% by reducing memory access
bottlenecks. Hardware prefetching further increases performance
by 8.6-15.9% due to the low memory pressure of single-threaded
encoding. Buffer-friendly prefetching provides an additional 18.3-
29.3% performance boost with more precise prefetch timing. The
improvement from buffer-friendly prefetching is less significant
for narrow stripes, potentially because data block loads in narrow
stripes have better spatial locality, limiting prefetching benefits.

5.9 Read Traffic Analysis

Figure 19 presents the memory read traffic observed for 1 KB block
stripe encoding using libipmctl [2] at different levels: encoding,
memory controller, and PM media. The traffic is normalized based
on ISA-L encoding throughput. Figure 19(a) shows that in single-
threaded low pressure tests, inaccurate hardware prefetching leads
to cascading amplification of read traffic. D1ALGA introduces more
software prefetch instructions, which lead to greater read traffic
due to their training effect on the hardware prefetcher [7]. But
this trade-off is reasonable in low pressure scenarios, as spare read
bandwidth is still available. Figure 19(b) shows that under high
pressure with 18 threads, ISA-L’s read traffic amplification at the
PM media layer increases significantly from 22.3% to 65.8%, due to
PM read buffer thrashing caused by excessive prefetching. Under
high pressure, this waste of read bandwidth becomes the most
critical bottleneck limiting its multi-threaded scalability. In contrast,
DiaLGa disables the hardware prefetcher to avoid amplification at
the memory controller layer, increases task loop granularity to
reduce amplification at the PM media layer, ultimately reducing
amplification by 76.7% compared to ISA-L.

6 Generality

Because DIALGA’s optimization strategies target the general char-
acteristics of PM, such as high access latency and internal hierar-
chies, it remains applicable to future PM devices, which also exhibit
similar characteristics, including Samsung CMM-H[24] and Kioxia
XL-FLASH[4]. From the perspective of storage hierarchy, PM media
generally serves as a larger-capacity tier with higher access latency
and requires a larger access granularity compared to DRAM. For
example, Samsung CMM-H integrates a DRAM buffer to hide the
large access granularity and latency of its underlying flash layer.

ICPP °25, September 08-11, 2025, San Diego, CA, USA

7 Related Works

Erasure Coding Acceleration. Accelerating erasure coding has
consistently been a significant focus in systems research. One ap-
proach concentrates on exploiting computer architectural resources
to enhance performance. This includes designing cache-friendly
memory access patterns to decrease memory accesses [17] and
leveraging SIMD instructions for vectorizing finite field computa-
tions [1, 19]. Another approach transforms finite field computations
into XOR operations and optimizes them by reducing XOR opera-
tions. For example, some studies propose more efficient encoding
matrices to reduce the number of XOR computations [9, 18], such
as searching using simulated annealing [35] or optimizing with
SLP techniques [25]. But unlike D1ALGA, none of them focus on
accelerating erasure coding for high-latency memory devices.
Coding on PM. Previous studies [29, 34] have employed coded
redundancy in systems to enhance PM reliability and have iden-
tified consequent performance challenges. To mitigate overhead,
TVARAK [13] proposes employing an additional hardware con-
troller to offload parity computation and writing. Vilamb [14] de-
lays and amortizes the parity updates over multiple data writes by
re-using the page table dirty bits. CodePM [28] proposes pipeline
encoding and persistent writing, which hide latency through over-
lapping instruction execution, thereby improving the update per-
formance of parity redundancy. However, TVARAK requires hard-
ware modifications, complicating practical implementations, while
Vilamb sacrifices reliability guarantees. Furthermore, CodePM’s
optimization is limited to updating tasks and does not address the
load bottleneck issue. In contrast, DIALGA can be integrated into
existing erasure coding libraries to accelerate memory loads.

8 Conclusion

This paper first identifies that the performance bottleneck of erasure
coding on PM is the high memory access latency caused by ineffi-
cient hardware prefetchers. To address this, we introduce D1ALGA to
adaptively analyze and schedule hardware/software prefetchers for
accelerating coding on PM. Results show that D1aLGA significantly
improves the encoding performance on PM.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China (No. 62272185, No. 61821003) and Basic Re-
search Program for Young Students (Doctoral Students) of the Na-
tional Natural Science Foundation of China (No. 623B2037). The
corresponding authors are Yuchong Hu and Dan Feng.

References

2024. Intel(R) Intelligent Storage Acceleration Library. Intel Corporation.

[2] 2024. IPMCTL User Guide. https://docs.pmem.io/ipmctl-user-guide/

[3] 2024. ISA Erasure Code Plugin — Ceph Documentation. https://docs.ceph.com/
en/latest/rados/operations/erasure-code-isa/

[4] 2024. XL-FLASH | Storage Class Memory (SCM) | KIOXIA. https://americas.
kioxia.com/en-us/business/memory/xlflash.html

[5] Intel Corporation. 2018. Intel 64 and IA-32 Architectures Optimization Reference
Manual. https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-
architectures-optimization-manual.pdf

[6] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress.

[7] Guillaume Didier, Clémentine Maurice, Antoine Geimer, and Walid J. Ghandour.

2022. Characterizing Prefetchers Using CacheObserver. In Proc. of SBAC-PAD.

—

Guanglei Xu, Hai Zhou, Yuchong Hu, Dan Feng, and Renzhi Xiao

[8] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick P. C. Lee, Weichun Wang, and
Wei Chen. 2021. Exploiting Combined Locality for Wide-Stripe Erasure Coding
in Distributed Storage. In Proc. of USENIX FAST.

Cheng Huang, Jin Li, and Minghua Chen. 2007. On Optimizing XOR-Based Codes

for Fault-Tolerant Storage Applications. In Proc. of IEEE ITW.

[10] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit

Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure Coding in Windows Azure

Storage. In Proc. of USENIX ATC.

Intel. 2019. Intel Optane Persistent Memory 100 Series 512GB.

https://ark.intel.com/content/www/us/en/ark/products/190351/intel-optane-

dc-persistent-memory-512gb-module.html

Saurabh Kadekodi, Francisco Maturana, Sanjith Athlur, Arif Merchant, K. V.

Rashmi, and Gregory R. Ganger. 2022. Tiger: Disk-Adaptive Redundancy Without

Placement Restrictions. In Proc. of USENIX OSDL

Rajat Kateja, Nathan Beckmann, and Gregory R. Ganger. 2020. TVARAK:

Software-Managed Hardware Offload for Redundancy in Direct-Access NVM

Storage. In Proc. of ISCA.

Rajat Kateja, Andy Pavlo, and Gregory R. Ganger. 2020. Vilamb: Low Overhead

Asynchronous Redundancy for Direct Access NVM. arXiv preprint (2020).

Cong Li, Yu Zhang, Jialei Wang, Hang Chen, Xian Liu, Tai Huang, Liang Peng,

Shen Zhou, Lixin Wang, and Shijian Ge. 2022. From Correctable Memory Errors

to Uncorrectable Memory Errors: What Error Bits Tell. In Proc. of SC.

Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang, Rui Wang,

and Fei Wu. 2024. CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree for

Reducing XPBuffer-Induced Write Amplification in Persistent Memory. In Proc.

of EuroSys.

Jiangiang Luo, Mochan Shrestha, Lihao Xu, and James S. Plank. 2014. Efficient

Encoding Schedules for XOR-Based Erasure Codes. IEEE TC (2014).

Tianyang Niu, Min Lyu, Wei Wang, Qiliang Li, and Yinlong Xu. 2023. Cerasure:

Fast Acceleration Strategies For XOR-Based Erasure Codes. In Proc. of ICCD.

[19] James S Plank, Kevin M Greenan, and Ethan L Miller. 2013. Screaming Fast Galois
Field Arithmetic Using Intel SIMD Instructions. In Proc. of USENIX FAST.

[20] Jiansheng Qiu, Yanqi Pan, Wen Xia, Xiaojia Huang, Wenjun Wu, Xiangyu Zou,
Shiyi Li, and Yu Hua. 2023. Light-Dedup: A Light-Weight Inline Deduplication
Framework for Non-Volatile Memory File Systems. In Proc. of USENIX ATC.

[21] I.S.Reed and G Solomon. 1960. Polynomial Codes Over Certain Finite Fields. J.
Soc. Ind. Appl. Math. (1960).

[22] Aditya Rohan, Biswabandan Panda, and Prakhar Agarwal. 2020. Reverse Engi-
neering the Stream Prefetcher for Profit. In Proc. of IEEE EuroS&P Workshops.

[23] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach.
pearson.

[24] Samsung. 2022. Memory-Semantic SSD. https://samsungmsl.com/ms-ssd/

[25] Yuya Uezato. 2021. Accelerating XOR-Based Erasure Coding Using Program
Optimization Techniques. In Proc. of SC.

[26] Ronglong Wu, Zhirong Shen, Zhiwei Yang, and Jiwu Shu. 2024. Mitigating

Write Disturbance in Non-Volatile Memory via Coupling Machine Learning with

Out-of-Place Updates. In Proc. of HPCA.

Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022.

Characterizing the Performance of Intel Optane Persistent Memory: A Close

Look at Its on-DIMM Buffering. In Proc. of EuroSys.

[28] Guanglei Xu, Yuchong Hu, Dan Feng, Wenpeng He, and Junyuan Huang. 2024.
CodePM: Parity-Based Crash Consistency for Log-Free Persistent Transactional
Memory. IEEE TCAD (2024).

[29] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit

Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. 2017. NOVA-

Fortis: A Fault-Tolerant Non-Volatile Main Memory File System. In Proc. of SOSP.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.

2020. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory.

In Proc. of USENIX FAST.

Juncheng Yang, Yao Yue, and KV Rashmi. 2020. A Large Scale Analysis of

Hundreds of In-Memory Cache Clusters at Twitter. In Proc. of USENIX OSDL

[32] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. 2015. Computer

Performance Microscopy with Shim. In Proc. of ISCA.

Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong, and Haibo Chen. 2022. MT2:

Memory Bandwidth Regulation on Hybrid NVM/DRAM Platforms. In Proc. of

USENIX FAST.

Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-Tolerant Persistent

Memory Programming Library. In Proc. of USENIX ATC.

Tianli Zhou and Chao Tian. 2019. Fast Erasure Coding for Data Storage: A

Comprehensive Study of the Acceleration Techniques. In Proc. of USENIX FAST.

Bohong Zhu, Youmin Chen, and Jiwu Shu. 2024. Exploring the Asynchrony of

Slow Memory Filesystem with EasyIO. In Proc. of EuroSys.

[o

[11

=
N

(13

[14

[15

[16

=
=

oy
=,

&
=

[30

[31

[33

[34

[35

@
2

https://docs.pmem.io/ipmctl-user-guide/
https://docs.ceph.com/en/latest/rados/operations/erasure-code-isa/
https://docs.ceph.com/en/latest/rados/operations/erasure-code-isa/
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://ark.intel.com/content/www/us/en/ark/products/190351/intel-optane-dc-persistent-memory-512gb-module.html
https://ark.intel.com/content/www/us/en/ark/products/190351/intel-optane-dc-persistent-memory-512gb-module.html
https://samsungmsl.com/ms-ssd/

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	2.2 Erasure Coding

	3 Observations
	3.1 Bottleneck Analysis
	3.2 Hardware Prefetcher Analysis
	3.3 Challenges

	4 Design
	4.1 Adaptive Coordinator
	4.2 lightweight Operator
	4.3 PM Read Buffer-Friendly Prefetch

	5 Evaluation
	5.1 Methodology
	5.2 Encode Throughput Analysis
	5.3 Multi-Thread Scalability Analysis
	5.4 Decode Throughput Analysis
	5.5 SIMD Instruction Analysis
	5.6 LRC Encode Throughput Analysis
	5.7 Cache Efficiency Analysis
	5.8 Breakdown Analysis
	5.9 Read Traffic Analysis

	6 Generality
	7 Related Works
	8 Conclusion
	Acknowledgments
	References

